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Abstract
Let H" pe a finite dimensional Hilbert space and 820 be a also showed that 92.¢ is bounded and positive IIJP-Q =0
generalized derivation induced by the orthogonal projections whenever Pand @ are positive. Finally, we show

Pand €. In this study, we have apprOX|mated the norm of
820 by the formula I 670 I = {Zl @ |* ¥ + {31812 and

compactness of b for compact operators P and Q.
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1. Introduction

Studies have been done on generalized derivations, inner derivations, aspects of the underlying algebra B(H) of these
derivations and the structures of the operators inducing the derivations. An operator T is called D—symmetric, if the closure of
the derivation 94 is equal to the closure of the derivation 87 in the norm topology. Anderson, Deddens and Williams [
showed that for a trace class operator T, 72 = PT implies that T F = T if T s D-symmetric operator. A generalization of
this concept was used in 3 to define a class of pairs of operators 4B € B(H) say, such that BT = T4 implies that
T'p=PT" T" P’ peing the adjoints of T and B respectively and T an element of trace class operators i.e. £-symmetric
operators. Salah [ constructed different Cx-algebras using the elements of P-symmetric operators i.e., A,B € B(H) gych that
TA= AT implies that AT = TB" Indeed by 113, for 4B € B(H) if the pair (A, B) is generalized P-symmetric then: tO(A,

B), (A, B) and (A, B) are € -algebras W -closed in B(H) % B(H) ang (A B) is a bilateral ideal of {(4.B). Continuity of
derivations as mappings on different algebras is an important concept which has been fairly researched on. Kaplansky [ and

later Sakai **, proved that a derivation §ofa CH—aIgebra is automatically norm-continuous. This idea was later employed by
Kadison [ to show that such derivation is also continuous in the ultra-weak topology only if such a derivation is of an algebra
of operators acting on a Hilbert space. Johnson ! and later Sinclair [*"1 proved the automatic norm continuity of derivations of a

semi-simple Banach algebra. Ringrose 2 used cohomological notation to prove that derivations from a € -algebra into a
Banach-Module are automatically norm continuous, and that for appropriate class of dual algebra modules, they are continuous

also relative to the ultraweak topology on the algebra and the weak *-topology on the module 121,
A linear mapping on an algebra ¥ into an X-bimodal M is called a local derivation if for each T € 4, there is a derivation O of

Xinto M such that 7 = 7 (T) 17, Most of the studies on local derivations have been focused on finding the conditions which
imply that a local derivation is a derivation. It is shown by Bresar ! that in certain algebra, derivations can be characterized by

some properties which local derivations trivially have, for example; Let X be a von Neumann algebra and let M pe a normed
X_bimodule. If a norm-continuous linear mapping 6 of X into M is a local derivation, then 9 is a derivation.
A linear mapping T on a complex unital Banach algebra 4 is spectrally bounded if 7(TX) = M7 (%) for all ¥ € X and some
M = 0 \here 7(-) denotes the spectral radius .. Bresar ! affirmed the fact that the image 9x of an inner derivation & of X is
contained in the radical 7@@X of X if and only if ¢ is spectrally bounded, where 724X s the Jacobson radical. His argument
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was essentially based on the results due to Ptak '3, that a spectrally bounded inner derivation has the property that

67X C 8(X), the set of quasinilpotent elements of X Curto ™ later on characterized the generalized inner derivations on a
unital Banach algebra which are spectrally bounded. In particular, [ simplified the argument due to ¥, that every spectrally

bounded inner derivation that maps into the radical is attainable . Suppose L(X.¥) is a space of all linear maps between
Banach spaces X and Y, and $ is a subset of L(X:Y) a mapping &* ¥ = T is said to be weak-2-local $ map if for every
XVEX and PEY" there exists lxve €5 depending on %V and @ satisfying PA() = @Taye (X)) ang
PAY) = ¢Teye (), The idea of weak-2-local derivations and automorphisms was introduced by Semrl 261 and explored
extensively in © and @. In 9, Niazi and others proved that every weak-2-local derivation on a finite dimensional ¢~ —algebra
is a linear derivation, and every weak2-local *-derivation on B(H) js a linear *-derivation. It was then proved that every
(weak)-2-local derivation on Co(L.4) js a linear derivation . Consequently, [ also showed that if B is an atomic von
Neumann or a compact Cx-algebra, then every weak-2-local derivation on Co(L, B) js a linear derivation. Furthermore, for a
general von Neumann algebra | every 2-local derivation on Co(L, M) js a linear derivation.

We begin by applying the properties of orthogonal projections P and @ to construct a new orthogonal projection P—Q we
then proceed to apply these properties to give examples of the same on finite dimensional Hilbert space using matrices. We

PX—XQ 3nd show that Opg is a bounded linear operator which is continuous and

then construct a derivation %pe(X) =
positive. Finally, we calculate the norm Il 8p.0 I of the derivation SP.2and determine the norm and numerical radii inequalities
for the same. In each of the properties of dpq discussed, we infer the results to the case when P =@ 1o obtain the result for

inner derivation 92. We shall denote set of all orthogonal projections acting on a Hilbert space # by o (H).

Remark: The set of all derivations induced by orthogonal projections shall be denoted by DGP[B(H)]. Similarly, we shall
denote by wa [B(H)] ang Dgp [B(H)] respectively the sets of all inner derivations and generalized derivations induced by
orthogonal projections. It is noted that if P=0Q then DEP [B(H)] ‘:’Dép [B(H)] . Let ¥ be a Hilbert space with a
decomposition # =V @ W* \yhere W™ is the orthogonal compliment of W. Suppose that 7@ € Fo(H) are orthogonal

projections on Viand W respectively, then for any arbitrary linear operator X, there exists a new orthogonal projection

Gpo(X) = (PX —XQ) € Dop[B(H)] hich acts on the subspace V & W+,

2. Basic definitions
Definition 2.1: (52, Section 1). Let B(H) pe a Cx—algebra of all bounded linear operators on a Hilbert space H an operator
Tap * B(H)— B(H) js called an elementary operator if it has the representation T(X) = Xiz1 A:XB, VX € B(H) where

As B; are fixed in BUH) or M(H) the multiplier algebra of B(H) For 4 and B fixed in B(H) for all X € B(H) we define the
particular elementary operators:

(i). the left multiplication operator (implemented by 4) La * B(H) — B(H) i defined by
La(X) = AX.
(ii). the right multiplication operator (implemented by B) Bs * B(H) — B(H) ig defined by

R5(X) = XB

(iii). the generalized derivation (implemented by 4: B) 84 * B(H) == B(H) i5 defined by

(iv). the inner derivation (implemented by 4) 8 * B(H) — B(H) i5 defined by
5,(X) = AX — XA.

(v). the basic elementary operator (implemented by 4 B)
M,g(X) = AXB

(vi). the Jordan elementary operators (implemented by A, B)

Uy 5(X) = AXB + BXA,VX € B(H).
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Definition 2.2: Let Mn(®) pe a space of matrices over K. The norm of A € Mu(K) i5 a function defined by

Il A Il =max{ll A7 IIl: 1 7 Il = 1} for a vector ¥ which obeys all the norm properties and in addition, it is submultiplicative and
subadditive ie. | AB 1< TANNB I ang I A+B 1< 1AL+ B llfor A B € M, (K)

Example 2.3: The following are some examples of the matrix (operator) norms:

(i). One-norm (the Pl-norm) T = Xj=1 | @y |. Let Mn(R) :R? — R? be given by r= [; ﬂthus for unit vectors
1= [é} and % [ﬂ then Ta) = [;} and Ta) = [ﬂ 0 IT(c) 0= ”[;]” = 1=+13 = 4and

ITC) 0= H[ﬂH = IR =3 efore 1T 5= 4

N _I-1
(ii). Max-norm (the £=-norm) I T 1°=max | a;; |- | o T pe a5 given in (i) above and vectors ~* [1} and 2 [ 1 ]then
I3 I1
) =[], TG =[]

1
— n -
(iii). Two-norm (the #*-norm on Ty I T 2= (Zj=1lag; D,

Definition 2.4: (1, Definition 2.1). Let T € B(H); — B(H); pe a bounded linear operator and Hy.H; finite dimensional

Hilbert spaces. The norm of the operator 7 is the smallest real number I T Il such that I T I=IT Il x I where, ¥ € HZ e
ITH=sup{Txl:Ixll= 1}

Remark 2.5: Given that T € B(H) is a compact operator, then we denote by £i(T)3 the singular values of T i.e the
1

e — (ym P >
eigenvalues of IT1 = (TT7)2 Schatten-p norm is an operator norm defined by IT = &= 5 (M) for 1 <p <. For
1

— @ v o
strictly positive P, the class of operators which admits the norms IT = Zj= 5 (7)) are called Schatten-F operators and

2 — 2
are denoted by Cr. Cr is an ideal in B(H) of compact operators whose 1 T 2<% o that I 1T1" 1o =T I g5 a finite P. The
Cp class has two subclasses for P = Land P = 2 given by:

= (Y= I ITIZ Ha= 11T 0%
(i). Taxicab norm (Cl)i For p =1 then T 1= (E=15(T) and 7] : ' The class of all operators which admit the

Nri=

norm Zj=15,(T) are called is called Trace class and is denoted by €y

o 2 S
(ii). Hilbert-Schmidt norm (C2): For P = 2 then I T 1= (Z7=15;(T))% 4nq I ITI? 1= T I The class of all operators which

Nri=

1
admit the norm Ej=15,(T)3 are called is called Trace class and is denoted by €2

Remark 2.6: The effect of an operator on a vector is a measure of how much an operator amplifies a norm of a unit vector.

. 2 2 .
Operator norm T 0 s generally a vector norm on the range of the operator Tsuchthat IT- 1= 1T 1% An operator acting on
a finite dimensional Hilbert space can be represented by a matrix.

Definition 2.7: Suppose that U-V.T € B(H) where U and V are both unitary and 4 being compact, then a norm ll- Il defined
by WUTVIE = Tl s called unitarily invariant norm.

Definition 2.8: Let  be a complex Hilbert space and T be a linear operator from & to itself. T is said to be positive if

(Tx,x) = 0 forall ¥ € H This is denoted by T = 00r0 =T T i then said to be strictly positive or positive definite if
(Tx,x) = 0 for g x € H\{0},

3. Results and discussions
We shall denote set of all orthogonal projections acting on a Hilbert space H by PO(H). In the sequel, we shall consider two
decompositions of #" thus; " = Hy © Hy gng H" = Hyy © Hap go that H" = Hy ©Hy = Hyy © Hyy

151


http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

Lemma 3.0.1: Suppose there exist two distinct ways of decomposing #", H" = Hy © Hz ang H" = Hyy © Ha; and if
Hy © Hypor Hyy ©Hy then: H" = (Hy @ Hy) & (HoN Hyy):

Proof: Given that HiCTHay then Hi+(HyNHy) = (Hyi+H;)NHyy=H" NHy; =Hyy:  and because
Hy N (Hy N Hy) = (HyNHy) N Hyz = {0} \we have Hzz = Hy @ (Hz N Hyy),

Therefore: Hn = Hy @ Hyo = Hyy © Hy @B (HyNHyp) = (Hy @ Hy ) D (HNHyz): When H11 © H22, the same

result follows by using 2 = Hiy @ (H2 N Hy;)
We now give some examples to illustrate the construction of matrices of orthogonal projections.

Example 3.0.2: Find the matrix for the orthogonal projection £ R > W given that W is generated by the vectors
'Ul = (1, 1, 1) and 1}2 = (1,0, 1)'

1 1
asfi o -t 30y
To see this let 11

3 2

e 2] and

4y =[1 —31]
-1 S

Ir1 -1
_ 11 1
Therefore, @ = A(ATA)T'AT. @ = i ? [—l ][1 0 L]

Pk | G2

B
2 2
=10 1 0
1ot 2
2 2J for any point (*.¥.2) € R®.
1 1
2 2 X+z xX+z
Qxy.z) =|0 1 Off¥|=( Y )
2 2
1 0 1|z
2 2

Remark 3.0.3: Suppose that 7" is an n-dimensional Hilbert space, then P(H") and £a(H™) shall be used to denote the set of
all projections acting on H™ and the set of all orthogonal projections acting on H" respectively. Naturally,

Po(H) © P(H) © B(H) The B(H) ysed in this study is commutative. We begin by discussion of the properties of £(#") and
Po(H™),

Theorem 3.0.4: Suppose that P,Q € Py(H) onto H1and Hy respectively, then the following are equivalent:
(i). P — Qis an orthogonal projection onto H11 N H1

(ii). P@=0QP =P
(iii). 22 © Hz,
Proof:

(i). = (ii). Suppose that 7+ @ € Fo(H),
By the projection property, (@ —FP)* = Q—P = 2P = PQ + QP

Now:@(2P = PQ + QP)= 2QP = QPQ + Q*P
and 2P = PQ + QP)Q = 2PQ = PQ2 + QPQ
which means that F@ = @F = P,

(ii). = (iii).
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For any ¥ € H", Px€ H; = Px = QPx € Hy; which means that H1< Hu. Suppose Tm = In =P = L.2..) tpen
PQ =P where 1= 11i-P, o= 1;= Q and ThTz = T2 therefore T2* € Hzz = Tox= T1Thx € H; 5o that H22 © Ha.
(iiii). = (ii). Given that flz2 € Hz. then for every * € Hn PX € Hy © Hyywhich implies that @(Px) = QP =P and since
Hy; CHythen ToX EHyp CHyforx E H'= T\ Tox=Tox =T\, = (I, -P)U,—Q) =U,-Q) = PQ=PF

(ii). = (i).
For X € (Hi1NH;) then (@ —P)x =T1Qx=Tyx= x,
But suppose that * = ¥1 + X3
where ¥1 € Hygnd X2 € Hyp
then (@ —P)x=(Q —P)x; + (@ — P)x;

= QTx;+ TQx, = 0.
Therefore (€ — P) is an orthogonal projection onto H11 N Hz along H1 @ Haz. (H; = Hi gng Hy; = Hi1), Now taking
X €B(H) for a commutative B(H), X(P—Q) =XP —XQ=PX—XQ which is the desired derivation. Suppose that
Pn = {1 and 9= = 1953=1 are bases for H1 and H2 respectively with H" = H1 & Haand P H" = H1.Q : H" = H,

L o
then, Uiz — {9} =7 is a basis for H11 N HT which is the range for P —Q.
Corollary 3.0.5: Let P. @ € Po(H). thenhe operator PX — X@ gives the shortest distance between H11 N Hi ang H™

. . . . 1 1
Proof: First we recall that PX —X@Q projects every point in #" orthogonally to H11 M HT, | et X1, %z € (Hiy NHT ) € H”
therefore for arbitrary ¥ € H™ then 1¥ —x1 1% Iy —x; I? < dist(y, HyyNHE)? + ¢ Recall that (Hu NHT ) and
diSt(HllnHl, H}: ianrEHJJHHJL ” j}_x’ ”.

So, by application of parallelogram law,
1
Il = 2= 200y =2y Py — 2 1) =2 1y =300y +22) I
= 2&.

Therefore, there exists t € HiuNHL t = (P —Q)xforsomex € H" g ch that IV —t I = dist(y, Hyy NHT ) 5o, the

approximant of #" to Hi1MHT s the orthogonal projection £ — @. Therefore, every ¥ € H can be uniquely written as
y=x + X \yhere ¥ € (HyNHT ) gng ¥ € (Hyy NHY ),

Lemma 3.0.6: Given a compact operator X € B(H), then PX and X@Q are also compact for £+ @ € Fo(H)

Proof: Suppose that X € B(H) js compact and € € Fo(H") then P is bounded. Let *» € H" be a bounded sequence. Then £@

is also bounded and contains a convergent subsequence. So XQ s compact. Now since Xis compact, therefore XXn contains a

PXx

convergent subsequence Xns. which converges in the range of X so "% also converges.

Theorem 3.0.7: Suppose that P+ @ € Fo(H™) and a compact X € B(H). then S7.0(X) js compact.

Proof: Let there exist bases Prs 9 and Pn in H" for P,@ and X respectively in 7" so that (PX —XQ) takes the
form, ¥ = Pnbn — bntn, Let ¥ be compact, U a closed unit ball of (11 M Hi ) and Zx a sequence of ¥(U). It suffices to show
that there exists a subsequence of *n that converges to U. By the supposition that ¥ is compact, for every @ € N, Zn = ¥Xp and

*n belongs to the set U s0, there exists a subsequence *ne which converges weakly to * € U we show that ¥*n converges
to ¥*n . Let ¥n be a sequence of finite rank operator that converges to y. For any m' €N ¥m s a closed set which is bounded

1 .
in a finite dimensional subspace (H11 MHi" ) of H" hence compact. So m*nx, k¥ €N converges to ¥mr(*). Given € =0,

£
—¥x = =
rax 2 for

£
there exists N € N gych that 1Y ~ v 1< 3, Furthermore, given a fixed NV, then K € N, 5o that Y%,
E =k
So that:
I ywxn, =¥ <1 —yN)x, 41y (20, —2) 141 Gy —¥)x |l
€ £

+o+=

€
< —
3 3 3
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So, Zme = Yy converges to YX €E¥(U) so that ¥(U) is compact. Suppose that ¥(U) is compact, then the union

(n) (n) (n)

1
T B - . n
Uz, erw) B(Zn: n) is an open covering of the compact set ¥(U), and therefore we can obtain vectors *1 » X2 ~s-o» X € H
E" F‘J‘l:l i I:':I"[:| .
such that Ui U0rx: n) is a covering of r(U), Suppose that H" span ¥ o1 EN T o arbitrary orthogonal projection
HJ’I
on

Letalso ¥n = inV.
1
For €>0.and ¥ 7% if 1 = N ith 12 I L then v — v I =llyx = Tyx |,

Now because T¥ € ¥ is the point in #" closest to ¥*, therefore
< i oy <ice
Iyx =¥ x 1= infigen, lyx—yx; | <3 :

G G
So, ¥ = ¥ as ™ - Which implies that Por [BUD] is a compact ideal of B(H)" Now since ¥n = ¥ € Doy [B(H)] e
assertion is proved.

Example 3.0.8: Let H" = £ gngm X m operators £ = [a:] ang @ = [By)]
such that

_ (P 1 =] _ (G 1 =]
QU_{O, 1:.#] and bu_{ﬂr 1:"'J:J

forn=m—=1 g (gx=1)=0apdm>2.

Let the operators £ and @ be bounded ie. for P = 1 Pn = (P1, P2, ---) €€% gnd@n = (q1, G2, --.) EL7. ot P e
majorized by @ or @ majorized by ? so that (Pr —@x) is also diagonal and (Pn — @n) = ((P1 —q1).(P2 — G2)....) €7
Suppose that [iMa—e(Pn —Gn) = 0 gnd (P — @)y = diag((py — q1).(P2 —42),0,0,...) then (P — @ is compact and
I (P—Q)—(P—Q)y Il = sup{lp, —qn| = n + 1} = 0_For an arbitrary X € B()? then PX — XQ js also compact.
Suppose that X= € €% with the following conditions, | » 1= 1, II (PX — X@)x | = I PX — XQ Il and some @ B €F, sych
that  Mpescl B — @)%, %) = i oo{(Dy — @)% 20, )

'Eimn—:m<(pn - Qn)kxn!xn}
la — B

Thus le — B] € R,

1
Example 3.0.9: Let H"™ = L*(T) pe the space of 2”—periodic functions and a constant function ©  vzz ' with Il I = L then
Puf = = [ f(x)dx Quf == ["" g(x)dx
the orthogonal projections F¥ and QU are defined by 2m 40 and 20 I .
1 pfZm
"

P-—Q = z—lnf (F() = g(dx (oo gor X € B(L2 (T)). then PX-XQ= z_fn b)(F(x) — g(x))dx 4 compact.

So

We apply the following example in showing how a matrix of 8.0 can be constructed.

Example 3.1.0: Consider two sets of vector Y1 = (0, 1, 0), v, = (0, 1, 1) gnguy = (1, L 1), up = (1,0,1),
By simple calculation, we get that

0 0
= r_[0 1 0 T, [1 1 -1 [ 2 —1
A é ilwﬂl [0 . 1}, ATa= [ 2], (44T) [_1 1]

0 0 0
AATHAT =0 1 0

So 0 0 ll thus we get an orthogonal projection
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0 0 0
P=|0 1 0
0 0 11,
Similarly for the second set of vectors, we get another orthogonal projection
g 2
2 2
XQ=|0 1 0
o 2
2 2

Now for an arbitrary operator with a matrix representation

2 03 5 05
1 0 0 0 0 0
Xo0= |1 1 PX — X0 = |-1 1
x=1o 1 1] PX =10 1 1 \ 2 2 \ - 1 3
0 0 0lthen 0 0 0Oland 0 0 0lsothat 0 0 o0l

Example 3.1.1: Let 7" be a complex four-dimensional Hilbert space and B(H) algebra of 4 * 4 matrices. We take Fo(H) to
be the subalgebra of diagonal matrices, so 9r.¢ * Fo(FH) = B(H) gypnose that P @ € Fo(H)are selfadjoint orthogonal
projections onto H1 and H11 spanned by the orthogonal unit vectors

1 . T 1 . T 1 . T
X1 =55 (1, —1 4+ V3, m[dl-—EWB), m[—z + iv3))

1 . iy 1 . 1 . T
X2 =35 (1, —1—iv/3, m(—z—wa), m[él- + 5iv3))

and the unit vector

1 7 7
Ko =—— 1, 2, ‘\"—, V- .
37 2.3 ( 2 2) respectively.

Then for an arbitrary operator X € B(H)wjth 1 X11=1, operator PX —XQ has a Hermitian matrix
Given by

— 1 . 1 o -
1 —4 — (=5 + 6iV3) ——(=5-6iV3)
"4 4 Viat Vis®
1 —2v14 -2v14
—| 1 . . 1
12| —(-5—6iv3) —2vV14 7 (= i\
v14( ) . 5 (795 + 12iV3)
1 . . 1 . ;
—(—5+6ivV3) —2V14 —(—95— 12i z
I ﬁ( +6iv3) —2V 5 (-95— 12iV3) : |

which is also idempotent. We now consider the linearity of 8.0 in the following proposition.
Proposition 3.1.2: A derivation PX — XQjs linear for an arbitraryX € B(H),

Proof: Let {fiier and {9:}ies be two orthonormal bases for H11 MHT and (Hi N HD® respectively, and T = 1 — (P — @)
be the orthogonal projection on (11 0 Hi)* Suppose X € B(H) then for X1 *2 € Hand @ F €K then by theorem 4.12,
there exist ¥ = (Pnbn — b1y) such that

v(ax; + Bxz) = ¥ Xie Lnlaxy + fxz, fi)
= Lier Zn{(Pnbn — bnty) (@xy + Bx3), fi)
= Yier Znl@Pnbn¥y + BPybnxs — by qnxy — fbngn¥z, fi)
= @Zier LulPnbn¥s fi) + B Eiet Zn(Pubn¥a fi) — @ Xiet Znlbn@nXys fi) — B Lier Enlbnn¥a fi)
= aXier Enl(Pnbn — Dn@n) %1, i+ B ier Zd (Pnbn — bnn) Xz fi)
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= ayx, + frx;
Corollary 3.1.3: A derivation X — X@ s linear on (i) #" and (i) B(H"),

Proof: (i). Linearity in H": Given that P» @ € Po(H) py [76, lemma 2] we can obtain a pair %Y € H and @B € Kand on

Im||Px. I=1IFPI|, im x, || = lim {Qx,_,x.%— |u|, Iim (Px,,x,. ) —=|A .
setting n I P2 I =P, Ll Qx| ||Q”and m (Qxp,Ap) = [l lim (P ) ||anda|sosett|nng:wc

+ By, Px =@ x+ By with (6 ¥)=0ang Ix =1y 1= 1 getalso that X* =% XV ==V and also that X acts on {*: ¥}
then, £ — @ is an orthogonal projection onto #11 N Hi On respective post and premultiplication of £ and € of £ — @ py X
gives a new operator of the form ¥ such that for * €

yx = Px—a" Xx + f° Xy
=ax + fy—a'x + 'y
=(@—a’)x+ B+ BV forox, py € H"
and on the other hand
8po(X)(ax + By) = y(ax + By)
= yax + yBy
= adpgo(X)x + Bpg(X)y
(ii). Linearity in B(H™): By similar calculation, we can find a pair of operators XY € B(H) gng @ f € K
SpglaX + BY )x ={P(aX + BY)— (aX + Y )Q}x
={aPX + BPY—aXQ — B YQ}x
= aPX —aXQ + BPY — BYQx
={ a8po(X)x + Bépg(¥ )}x_
so, %7.0% s linear on both #™ and B(H).

2 —
Proposition 3.1.4: Suppose that 7@ € PO(H) and an arbitrary X € B(H), then 9" pe(¥) = PX + XQ —2PXQ.

Proof:
62P,Q[X) = 6P,Q(PX —XQ)
= P(PX —XQ) — (PX —XQ)Q

PPX -PXQ — PXQ + XQQ

PPX + XQQ — 2PXQ
— PX + XQ - 2PXQ
Theorem 3.1.5: Suppose that P+ @ € Pa(H), then the derivation 920(X) = PX —XQ s 5nded from below.

Proof: By the definition of b we observe that 6po(X) = Pn —Gn is meaningful for the basesPr and 9n of P and ¢
respectively with Zn I fo 17 = 1 Since Pn and @x are bounded, from the definition of 222X} we have,

[ 6P-Q‘Uﬂ) ”2 =1 Zn (pnfn _ann) I :

ZZn I p:nfn ”2 _Zn I fnpn ”2
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= Znlpal? —Zn lanlPY 0 £ 12,

Since the difference of finite summation of Pn and 9n is also bounded, by taking supremum of both sides of the above
1y 1
inequality gives 18 1= {Xalpa 1P} 72 — {(Zalgal*3=.

Proposition 3.1.6: Suppose that 7> @ € Po(H). then the derivation 92.¢ is bounded from above.

Proof: Let £>@ and % be induced by Pn, 9n respectively and fr as arbitrary elements of B(H), By the definition of & we have
for {n Ynfn ”2} =1gngl Infnl=1 that

1850 1= 1 Zn(pnfn — fagn) 17

S En Pafu 1241 En fodn I
{Znlpal® + Zalgnl? I En fr 17}
{Znlpal® +Znlgnl?}

{ZnlPnl +Znlgnl }

I,

1 1
Taking the supremum of both sides of the inequality gives us | Gpo(X) 1= {Xn lpn 37 +{Zn lqnl}2,

Proposition 3.1.7: Suppose that £-@ € Po(H), then 92.0(%) has a bounded inverse on H11 N H1 if and only if 920(X) js
bounded from below.

Proof: From the definition of 5?-@, we have that Gpo(X) is a transformation ESP-':;!(X): H"™ _, Hyy NHY . Now suppose that

Prs n and *n as described in theorem 4.12 are all bounded from, then so is ¥, and therefore there exists a real number 7 = 0

such that 1Y) I =m llx | ¥V x € H". This means that ¥ is a one-to-one map. Thus ¥ is a bijection and hence has an inverse,
1

1. o -1 -1 =
y~1: B(H) > Py(H)™ \which is linear and onto. We then show that ¥~ is bounded and ¥~ 1= 7,

Let ¥ €EHu NH{ gng P,Q"€ Py(H)™ then ¥ € ¥(X). for unique elements * € H™ and P.@ € Fo(H)™ Now, since 7 is
bounded from below, we get ™ - IV IZ1y ¥ lje, 1y ~*¥ 1< m™ 1 ¥ I and since P- @ are arbitrary in Po(H)™ and ¥ is

1 1 _ _ 1
1< 1Y IVY €Hy OHT 1o v ™ is bounded. Alsoll ¥ 2 1< 7,

arbitrary in H11 N HT | we get 1 V7Y
Conversely, suppose that y has a bounded inverse on Po(H)"  Since " # 0, we have IIT'_J'IIQ'E 0 and therefore y = 0
Since ¥: Fo(H)" = B(H)" s pijective, each ¥ EHu1NHT js ¥(X) for a unique * €H" So, the relation
Iy~ I<ny=* Myl ¥Yy€ Hy NHT can be written s
Iy~ v Nz ly tillxl Vy€ HyyNHY

Which shows that 8p.o(X) is bounded from below.

Corollary 3.1.8: Given P @ € Fo(H) then S22 is continuous.

Proof: First we assume that £ 1L @  For an arbitary * EHU IXNI=1 then X=Px+ Qx gpq
I 02=NPx 11>+ 1 Qx I*= 1 Px 1% gng Il x 1= I Px II*+1 Qx 1=l @x I* Thus both P* and @* are bounded by 1 and so

is PX and @X. Suppose that 972 is continuous at 0, then we can get some 4 > 0 such that for all ¥ € H with 1V I <2 then

A(2)=2 _r@Hn<t
vy <1 Now for *€H and *# 0 then " \zimi/ 2| 50 Il By the linearity of PX —XQ and
homogeneity of the norm, we get

= Sap=pat = -z
L2Iy@AED =045 =0 W g therefore | (PX — XQ)x IS M Il x Il wigh M =7

In the following discussion, we consider the positivity of the operator Opo on H",
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Lemma 3.1.9: The product of two commuting positive operators P € Py(H") ang X € B(H) on H" js also positive on H"

Proof: Let £ # 0 and define a sequence of operators {Snz1) by S;=PIPI S, +1 =S5, —S7 = S,(I -5,) for

polynomials Sx in P and hence selfadjoint operators that commute with £ for all @ € N So that P = I P 1 Z72: X 53, For
every X EH™, T ¥ 11 S,x IIP< o0 g5 that I Spx 1= 0 Now, (PXx,x) = I P Il Xp=y (XS,x,5,x) = 0

Lemma 3.2.0: Let " be a finite dimensional Hilbert space and £»@ € Po(H") sych that TanP < ranQ gng X € B(H) 4
positive operator on H™ that commutes with both P and @. Thenll PX —XQ I* =l PX I°—I XQ I* ang Il PX I <1 XQ I?

Proof: We invoke vector majorization thus: Given that P+ @ € Po(H) then P — @ is an orthogonal projection onto H11 N Hi
along (Hit NHi ) gng TanP, ranQ € Hyy NHY | ot p €7anP, p = {p}Z1 and 9 € ranQ g ={q:3}i: . For suitable
bases, we can obtain the matrices for F»@ and ¥ € B(H) sych that the Hilbert-Schmidt norm applies as follows;

1 1 1
IP I = (T8 Tf=r |2 1902 1 Q o= (T8 Tt 195 17)% gg 1 X 12 = (T81 Tt 1255 12 1ren 24 qli] < 251 and

for an arbitrary L *[i].

1

Il PX-XQll; = (X2 Xk | pyxi; —%:50:5 |92
1 1
= (X2 Z}tzl | PijXij |2)3 — (X2 E}tzl | qiiXij |2)2
m n 2 2 m n 2 2
= (X2 Zj=l | Pij¥Xi; )z —(XE4 Ej=l | Xi ;5 <)z

=[PX l,-lIXQ ;= 0

Theorem 3.2.1: Let . @ € Po(H) sych that P = @ and an arbitrary positive operator X € B(H) Then Spe(X) = PX—XQ
is positive.

Proof: It suffices to show that Gp.0(X) has square roots. If P = Q then Gpo(X) =0 then 8po(X) = U, non-negative.
Suppose that P =@ # Othen 0= (P—Q) =1 = 0 = (PX —XQ) = I for an arbitrary positive operator X € B(H),

Now Il (PX = X@Q) | =(PX — X@) must then satisfy the condition that O =Il (PX —XQ) Il =(PX = XQ) =1 3nd 50 we can
find an operator 4 such that 4% = Il (PX — X@) I (PX — XQ)

Then S = (VI (PX = XQ) DA giges % = (PX—XQ) wethenset Z=1—(PX—XQ) angV = =5 The operator
V should have the property (I =V )* =1 —Z that is implicitly expressed as

V=3E+V (4.2.1)

Now 9=Z =1 andVchosenissuchthat 0=V =1

Conversely, if 0 =V=1Tgng satisfy equation (4.2.1) above, then S=I-Visa positive square root of T we apply method
of successive approximations to solve (4.2.1). We set W =1 and define ¥x recursively by

1
Vo1 =3Z+V) n=1012 (4.2.2).

We show that = converges strongly to a solution of equation (4.2.1).
Letd =R =1 (4.2.3)
This is obviously true for a positive integer n.
= i i 2 n
(Vg 1) = 2(.Z'x,x}+ SIVxI* VxeH (4.2.4)

which implies that ¥a+1 = 0
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Now Yo <1,

Suppose that ¥n = )

then equation (4.2.4) gives
1 1 2
apr 26y S {00+ SN = AI0%) Gnee Z < Tyang Vi <1 Thys Vs <1,

Consequently, I Va 1= 1V n€ N Now we show that Vn = Va+1 V1 €N, VA{0}je Viss — Vo 2 0. Next, we observe that

V, -V, =2(z-1
Vi is a polynomial in Z with non-negative coefficients. Now this is true for * = 0 (for 't = "0 = 3 .

We observe that

1 1
Vorr —Va=-(Z + VI)—-(Z- VL)) (4.2.5)

(It is noted that ¥n-1 and ¥ are both polynomials in £ and so ¥n <> ¥a-1). Suppose that ¥» = ¥2-1 is a polynomial in Z with
non-negative coefficients, then equation (4.2.5) shows that Yr+1 — Vi is also a polynomial in £ with non-negative coefficients
for each non-negative ™. Next, we show that

ZF= 0 (4.2.6)

For K=0.L2.. 1t k = 2j then (Zx.x)=11Z'x 1720, ¥ x € H" sing equation (4.2.6) and the fact that each
Va+1 — Vi is a polynomial in £ with non-negative coefficients, we see that Ya+1 — V2 = O for all the non-negative integer n.

The sequence (Vr) satisfies,
0 =V,=WVia=Lnp=01,2, (4.2.7)

and so, there is a self-adjoint operator V' € B(H) sych that

e V,h=sV=1 12012 (4.2.8)

By equation (4.2.8), we see that the operator ¥ is a solution of equation (4.2.4). Letting ™ — “ we have from equation (4.2.2)

V =5 —limV,,,
=5—1lim3(Z + V)

1
=§(Z + W)

thenS = I =V js a square root of (PX —XQ).

4. Conclusion
We have shown that X —X@ s bounded, continuous everywhere and positive i.e., | PX —XQ lI= 0 for positive operators
P.Q and an arbitrary operator X For objective two, we have approximated the norm of Opq by the formula

1 1
I 5P-Q I={Zla |2}2 —{ZIB |2}3 and that this norm is bounded.
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