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Abstract 

Let  be a finite dimensional Hilbert space and  be a 

generalized derivation induced by the orthogonal projections 

and . In this study, we have approximated the norm of 

 by the formula  and 

also showed that  is bounded and positive ∥  ∥≥ 0 

whenever and  are positive. Finally, we show 

compactness of  for compact operators P and Q. 
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1. Introduction 

Studies have been done on generalized derivations, inner derivations, aspects of the underlying algebra  of these 

derivations and the structures of the operators inducing the derivations. An operator  is called -symmetric, if the closure of 

the derivation  is equal to the closure of the derivation  in the norm topology. Anderson, Deddens and Williams [1] 

showed that for a trace class operator ,  implies that  if  is -symmetric operator. A generalization of 

this concept was used in [13] to define a class of pairs of operators  say, such that , implies that 

P , ,  being the adjoints of  and  respectively and  an element of trace class operators i.e. -symmetric 

operators. Salah [14] constructed different -algebras using the elements of -symmetric operators i.e.,  such that 

 implies that . Indeed by [13], for , if the pair (A, B) is generalized P-symmetric then: τ0(A, 

B), ι(A, B) and κ(A, B) are -algebras -closed in  and  is a bilateral ideal of . Continuity of 

derivations as mappings on different algebras is an important concept which has been fairly researched on. Kaplansky  [8] and 

later Sakai [15], proved that a derivation  of a -algebra is automatically norm-continuous. This idea was later employed by 

Kadison [6] to show that such derivation is also continuous in the ultra-weak topology only if such a derivation is of an algebra 

of operators acting on a Hilbert space. Johnson [5] and later Sinclair [17] proved the automatic norm continuity of derivations of a 

semi-simple Banach algebra. Ringrose [12] used cohomological notation to prove that derivations from a -algebra into a 

Banach-Module are automatically norm continuous, and that for appropriate class of dual algebra modules, they are continuous 

also relative to the ultraweak topology on the algebra and the weak -topology on the module [12].  

A linear mapping on an algebra  into an -bimodal  is called a local derivation if for each , there is a derivation of 

 into  such that   [7]. Most of the studies on local derivations have been focused on finding the conditions which 

imply that a local derivation is a derivation. It is shown by Bresar [9] that in certain algebra, derivations can be characterized by 

some properties which local derivations trivially have, for example; Let  be a von Neumann algebra and let  be a normed 

-bimodule. If a norm-continuous linear mapping  of  into  is a local derivation, then  is a derivation.                                                                                                                                                       

A linear mapping  on a complex unital Banach algebra  is spectrally bounded if  for all  and some 

 where  denotes the spectral radius [4]. Bresar [9] affirmed the fact that the image  of an inner derivation  of  is 

contained in the radical  of  if and only if  is spectrally bounded, where  is the Jacobson radical. His argument 
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was essentially based on the results due to Ptak [11], that a spectrally bounded inner derivation has the property that 

, the set of quasinilpotent elements of . Curto [4] later on characterized the generalized inner derivations on a 

unital Banach algebra which are spectrally bounded. In particular, [4] simplified the argument due to [9], that every spectrally 

bounded inner derivation that maps into the radical is attainable [4]. Suppose  is a space of all linear maps between 

Banach spaces  and , and  is a subset of , a mapping  is said to be weak-2-local  map if for every 

 and , there exists , depending on  and  satisfying , and 

. The idea of weak-2-local derivations and automorphisms was introduced by Semrl [16] and explored 

extensively in [3] and [2]. In [10], Niazi and others proved that every weak-2-local derivation on a finite dimensional algebra 

is a linear derivation, and every weak2-local ∗-derivation on  is a linear ∗-derivation. It was then proved that every 

(weak)-2-local derivation on  is a linear derivation [3]. Consequently, [3] also showed that if  is an atomic von 

Neumann or a compact -algebra, then every weak-2-local derivation on  is a linear derivation. Furthermore, for a 

general von Neumann algebra , every 2-local derivation on  is a linear derivation.                                             

We begin by applying the properties of orthogonal projections  and  to construct a new orthogonal projection  . We 

then proceed to apply these properties to give examples of the same on finite dimensional Hilbert space using matrices. We 

then construct a derivation  and show that   is a bounded linear operator which is continuous and 

positive. Finally, we calculate the norm of the derivation and determine the norm and numerical radii inequalities 

for the same. In each of the properties of δP,Q  discussed, we infer the results to the case when  to obtain the result for 

inner derivation . We shall denote set of all orthogonal projections acting on a Hilbert space  by                                                                                                                                    

 

Remark: The set of all derivations induced by orthogonal projections shall be denoted by . Similarly, we shall 

denote by  and  [B(H)] respectively the sets of all inner derivations and generalized derivations induced by 

orthogonal projections. It is noted that if  then  Let  be a Hilbert space with a 

decomposition  where  is the orthogonal compliment of . Suppose that  are orthogonal 

projections on  and  respectively, then for any arbitrary linear operator X, there exists a new orthogonal projection 

 which acts on the subspace . 

 

2. Basic definitions 

Definition 2.1: (52, Section 1).  Let  be a -algebra of all bounded linear operators on a Hilbert space . An operator 

 is called an elementary operator if it has the representation  where 

 are fixed in  or , the multiplier algebra of . For  and  fixed in , for all  we define the 

particular elementary operators: 

(i). the left multiplication operator (implemented by )  is defined by              

 

                                                                                                                                                     
 

(ii). the right multiplication operator (implemented by B)  is defined by                         

 

. 

 

(iii). the generalized derivation (implemented by )  is defined by                    

 

.                                                                                                                                     

 

(iv). the inner derivation (implemented by )  is defined by                                    

 

 
 

(v). the basic elementary operator (implemented by )  

 

 
 

(vi). the Jordan elementary operators (implemented by A, B) 
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Definition 2.2: Let  be a space of matrices over . The norm of  is a function defined by 

 for a vector  which obeys all the norm properties and in addition, it is submultiplicative and 

subadditive i.e., and for  

 

Example 2.3: The following are some examples of the matrix (operator) norms:                                                                                                                                                        

 

(i). One-norm (the -norm) . Let   be given by thus for unit vectors 

, and  then  and  so and 

 therefore                                                                                                                                        

 

(ii). Max-norm (the -norm)  Let  be as given in (i) above and vectors  and then 

 and                                                                                    

 

(iii). Two-norm (the -norm on ) .                                                                   

 

Definition 2.4: (1, Definition 2.1). Let  be a bounded linear operator and  finite dimensional 

Hilbert spaces. The norm of the operator  is the smallest real number  such that  where, , i.e 

. 

 

Remark 2.5: Given that  is a compact operator, then we denote by , the singular values of  i.e the 

eigenvalues of . Schatten-p norm is an operator norm defined by  for 1 ≤ p ≤ ∞. For 

strictly positive , the class of operators which admits the norms  are called Schatten-  operators and 

are denoted by .  is an ideal in  of compact operators whose , so that  for a finite . The 

 class has two subclasses for  and  given by: 

 

(i). Taxicab norm ( ): For p = 1 then  and  . The class of all operators which admit the 

norm  are called is called Trace class and is denoted by                                                                                                                                                                        

 

(ii). Hilbert-Schmidt norm : For  then  and  The class of all operators which 

admit the norm  are called is called Trace class and is denoted by  

 

Remark 2.6: The effect of an operator on a vector is a measure of how much an operator amplifies a norm of a unit vector. 

Operator norm  is generally a vector norm on the range of the operator  such that . An operator acting on 

a finite dimensional Hilbert space can be represented by a matrix. 

 

Definition 2.7: Suppose that , where  and  are both unitary and  being compact, then a norm  defined 

by  is called unitarily invariant norm. 

 

Definition 2.8: Let  be a complex Hilbert space and  be a linear operator from  to itself.  is said to be positive if 

, for all . This is denoted by  or .  is then said to be strictly positive or positive definite if 

, for all . 

  

3. Results and discussions  

We shall denote set of all orthogonal projections acting on a Hilbert space H by P0(H). In the sequel, we shall consider two 

decompositions of  thus;  and  so that  
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Lemma 3.0.1:  Suppose there exist two distinct ways of decomposing ,  and  and if 

 or  , then:  

 

Proof: Given that , then : and because 

, we have ).  

 

Therefore  When H11 ⊂ H22, the same 

result follows by using  

We now give some examples to illustrate the construction of matrices of orthogonal projections.                                                        

 

Example 3.0.2: Find the matrix for the orthogonal projection  given that  is generated by the vectors 

and .  

To see this let    

 

 and   

 

Therefore,        

                                                         

 

 for any point                                                                   

 

 
 

Remark 3.0.3: Suppose that  is an n-dimensional Hilbert space, then  and  shall be used to denote the set of 

all projections acting on   and the set of all orthogonal projections acting on   respectively. Naturally, 

. The  used in this study is commutative. We begin by discussion of the properties of  and  

.  

 

Theorem 3.0.4: Suppose that onto  and H11 respectively, then the following are equivalent: 

(i).  is an orthogonal projection onto  . 

 

(ii). . 

 

(iii). . 

 

Proof:  

(i). ⇒ (ii). Suppose that .                                                                                                                         

By the projection property, .                                                                     

 

Now  

and    

which means that .                                                                                                            

 

(ii). ⇒ (iii).   
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For any  which means that  . Suppose  then 

 where  and   therefore  so that                                                                                                

(iii). ⇒ (ii). Given that  then for every  which implies that      and since 

 then  for                                                                                                            

 

(ii). ⇒ (i).   

For  , then .                                                                                             

But suppose that  

where and  

then  

                                                                                                                      

Therefore  is an orthogonal projection onto  along  and          . Now taking 

, for a commutative  which is the desired derivation. Suppose that 

and  are bases for  and  respectively with and  

then,  is a basis for  which is the range for P −Q.                                                                                                                                                           

 

Corollary 3.0.5: Let  thenhe operator gives the shortest distance between  and  

 

Proof: First we recall that  projects every point in  orthogonally to . Let , 

therefore for arbitrary , then . Recall that  and 

  
 

So, by application of parallelogram law,  

     

                    
 

Therefore, there exists   such that  ). So, the 

approximant of  to  is the orthogonal projection . Therefore, every  can be uniquely written as 

 where   and . 

 

Lemma 3.0.6: Given a compact operator  , then  and  are also compact for   

 

Proof: Suppose that   is compact and  then P is bounded. Let  be a bounded sequence. Then  

is also bounded and contains a convergent subsequence. So  is compact. Now since  is compact, therefore  contains a 

convergent subsequence  which converges in the range of . So  also converges.                                                                                                                                                                        

 

Theorem 3.0.7: Suppose that  and a compact  then is compact.                                                            

 

Proof: Let there exist bases  and  in  for  and  respectively in  so that  takes the 

form, . Let  be compact,  a closed unit ball of  and  a sequence of . It suffices to show 

that there exists a subsequence of  that converges to . By the supposition that  is compact, for every  and 

 belongs to the set . So, there exists a subsequence  which converges weakly to  . We show that  converges 

to  . Let  be a sequence of finite rank operator that converges to γ. For any ,   is a closed set which is bounded 

in a finite dimensional subspace   of , hence compact. So ,  , converges to . Given  , 

there exists  such that . Furthermore, given a fixed , then , so that  for 

.  

So that:  
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So,  converges to  so that  is compact. Suppose that  is compact, then the union 

 is an open covering of the compact set , and therefore we can obtain vectors  

such that  is a covering of . Suppose that  span  an arbitrary orthogonal projection 

on .  

Let also . 

For  , and    if  with , then . 

 

Now because  is the point in  closest to  , therefore 

 

   
 

So, as  Which implies that  is a compact ideal of . Now since  the 

assertion is proved.  

 

Example 3.0.8: Let  and  operators  and   

 

such that 

 

 and  

 

for  and m ≥ 2. 

 

Let the operators  and  be bounded i.e. for ,  and  Let  be 

majorized by  or  majorized by  so that  is also diagonal and  

Suppose that  and , then  is compact and 

. For an arbitrary , then  is also compact.  

Suppose that  , with the following conditions,  and some , such 

that   

 

 
 

 
 

Thus .  

 

Example 3.0.9: Let  be the space of −periodic functions and a constant function  with , then 

the orthogonal projections  and  are defined by and . So 

 and so for , then  is compact. 

We apply the following example in showing how a matrix of  can be constructed. 

 

Example 3.1.0: Consider two sets of vector  and .  

By simple calculation, we get that 

                                                                                                 

 
 

So   thus we get an orthogonal projection 
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.  

 

Similarly for the second set of vectors, we get another orthogonal projection 

   .  

 

Now for an arbitrary operator with a matrix representation 

then and so that .  

 

Example 3.1.1: Let  be a complex four-dimensional Hilbert space and  algebra of  matrices. We take  to 

be the subalgebra of diagonal matrices, so  . Suppose that are selfadjoint orthogonal 

projections onto  and  spanned by the orthogonal unit vectors                                

 

 
 

 
 

and the unit vector                                                                                                                                                                                                                              

                      

 respectively.  

 

Then for an arbitrary operator with operator has a Hermitian matrix 

Given by  

 

 
 

which is also idempotent. We now consider the linearity of  in the following proposition. 

 

Proposition 3.1.2: A derivation  is linear for an arbitrary . 

 

Proof: Let and  be two orthonormal bases for   and , respectively, and  

be the orthogonal projection on . Suppose  then for  and  , then by theorem 4.12, 

there exist ) such that  

 

  
 

                                                                                                                            
     

 
 

  
 

+  
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Corollary 3.1.3: A derivation  is linear on (i  and (ii) . 

 

Proof: (i). Linearity in :  Given that , by [76, lemma 2] we can obtain a pair  and  and on 

setting  and  and also setting Qx = αx 

+ βy, Px =  x + y with  and . Set also that    and also that  acts on  

then,  is an orthogonal projection onto . On respective post and premultiplication of  and  of  by  

gives a new operator of the form  such that for , 

 

 
 

        
   

                 for αx, βy ∈   

  

and on the other hand 

 

 
                                                 

     
                                            

     
 

(ii). Linearity in :  By similar calculation, we can find a pair of operators  and    

 

 
                                                                          

   
                  

     
                                                                          

    .  

 

So,  is linear on both  and .  

 

Proposition 3.1.4: Suppose that  and an arbitrary , then  

 

Proof:  

 

 
 

 
 

 
                                                                         

   
 

Theorem 3.1.5: Suppose that , then the derivation  is bounded from below. 

 

Proof: By the definition of  we observe that  is meaningful for the bases  and   of  and  

respectively with . Since  and  are bounded, from the definition of  we have, 

 

 =  

                                          

   ≥  
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= . 

 

Since the difference of finite summation of  and  is also bounded, by taking supremum of both sides of the above 

inequality gives  

 

 

Proposition 3.1.6: Suppose that  then the derivation  is bounded from above. 

 

Proof: Let  and  be induced by ,  respectively and  as arbitrary elements of . By the definition of , we have 

for  and  that 

  
 

                                     
               

                                                                                                
               

   
               

    
 

Taking the supremum of both sides of the inequality gives us . 

 

Proposition 3.1.7: Suppose that , then  has a bounded inverse on  if and only if  is 

bounded from below. 

 

Proof: From the definition of , we have that  is a transformation ):  →  . Now suppose that 

 and  as described in theorem 4.12 are all bounded from, then so is , and therefore there exists a real number  

such that  This means that  is a one-to-one map. Thus  is a bijection and hence has an inverse, 

  which is linear and onto. We then show that  is bounded and .  

Let   and , then  for unique elements  and . Now, since γ is 

bounded from below, we get  i.e.,  and since  are arbitrary in  and  is 

arbitrary in  , we get   . Thus  is bounded. Also  .  

 

Conversely, suppose that γ has a bounded inverse on  . Since , we have ∥ ∥  0 and therefore . 

Since   is bijective, each  is  for a unique . So, the relation 

 can be written as                                      

.                                                                                                          

 

Which shows that  is bounded from below. 

 

Corollary 3.1.8: Given  then  is continuous. 

 

Proof: First we assume that . For an arbitrary , then  and 

 and . Thus both  and  are bounded by 1 and so 

is  and . Suppose that  is continuous at , then we can get some  such that for all  with  then 

. Now for   and  then ,  so  By the linearity of PX −XQ and 

homogeneity of the norm, we get  

   and therefore  with . 

 

In the following discussion, we consider the positivity of the operator  on . 
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Lemma 3.1.9: The product of two commuting positive operators  and  on  is also positive on .  

 

Proof: Let  and define a sequence of operators  by  for 

polynomials  in  and hence selfadjoint operators that commute with  for all . So that . For 

every  so that .                        Now,                                                                                          

 

Lemma 3.2.0: Let  be a finite dimensional Hilbert space and  such that  and  a 

positive operator on  that commutes with both  and . Then and  

 

Proof: We invoke vector majorization thus: Given that  then  is an orthogonal projection onto  

along  and . Let  and . For suitable 

bases, we can obtain the matrices for  and  such that the Hilbert-Schmidt norm applies as follows; 

 and . Then  and 

for an arbitrary  

   

   
         

                      
      

                                                        
 

                       
 

Theorem 3.2.1: Let  such that  and an arbitrary positive operator . Then  

is positive. 

 

Proof: It suffices to show that  has square roots. If  then  then  , non-negative. 

Suppose that  then  for an arbitrary positive operator .  

Now  must then satisfy the condition that   and so we can 

find an operator   such that    

Then   satisfies  .   We then set   and . The operator 

 should have the property  , that is implicitly expressed as 

 

   (4.2.1) 

 

Now  , and V chosen is such that .  

 

Conversely, if  and satisfy equation (4.2.1) above, then   is a positive square root of . We apply method 

of successive approximations to solve (4.2.1). We set  and define  recursively by 

 

   ,  (4.2.2).                                                            

 

We show that  converges strongly to a solution of equation (4.2.1).  

 

Let   (4.2.3)                                  

 

This is obviously true for a positive integer n. 

 

  (4.2.4) 

 

which implies that                                                                                                                          
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Now .  

 

Suppose that ,  

 

then equation (4.2.4) gives                                                             

 

  (since  ) and  . Thus .  

 

Consequently, . Now we show that  i.e.,  Next, we observe that 

 is a polynomial in Z with non-negative coefficients. Now this is true for  (for .   

We observe that 

 

 (4.2.5) 

 

(It is noted that  and  are both polynomials in  and so  ). Suppose that  is a polynomial in  with 

non-negative coefficients, then equation (4.2.5) shows that  is also a polynomial in  with non-negative coefficients 

for each non-negative . Next, we show that 

 

 (4.2.6) 

 

For   If , then . Using equation (4.2.6) and the fact that each  

 is a polynomial in  with non-negative coefficients, we see that   for all the non-negative integer n.  

 

The sequence ( ) satisfies, 

 

  n = 0, 1, 2, (4.2.7) 

 

and so, there is a self-adjoint operator   such that 

 

  n = 0, 1, 2 (4.2.8) 

 

By equation (4.2.8), we see that the operator   is a solution of equation (4.2.4). Letting  we have from equation (4.2.2) 

 

 
 

 
 

 
 

then  is a square root of  

 

4. Conclusion 

We have shown that  is bounded, continuous everywhere and positive i.e.,  for positive operators 

 and an arbitrary operator  For objective two, we have approximated the norm of  by the formula 

 and that this norm is bounded. 
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