Received: 25-01-2022
Accepted: 05-03-2022

International Journal of Advanced Multidisciplinary Research and Studies

ISSN: 2583-049X

Characterization of derivations implemented by orthogonal projections in Hilbert

 Spaces${ }^{1}$ IO Okwany, ${ }^{2} \mathrm{NB}$ Okelo, ${ }^{3} \mathrm{O}$ Ongati
${ }^{1,2,3}$ Department of Pure and Applied Mathematics, Jaramogi Oginga Odinga University of Science and Technology, Bond, Kenya

Corresponding Author: IO Okwany

Abstract

Let H^{n} be a finite dimensional Hilbert space and $\delta_{P, Q}$ be a generalized derivation induced by the orthogonal projections $P_{\text {and }} Q$. In this study, we have approximated the norm of $\delta_{P, Q}$ by the formula $\left\|\delta_{P, Q}\right\|=\left\{\Sigma|\alpha|^{2}\right\}^{\frac{1}{2}}+\left\{\Sigma|\beta|^{2}\right\}^{\frac{1}{2}}$ and

also showed that $\delta_{P, Q}$ is bounded and positive $\left\|^{\delta_{P, Q}}\right\| \geq 0$ whenever P and Q are positive. Finally, we show compactness of $\delta_{P, Q}$ for compact operators P and Q .

Keywords: Orthogonal Projections, Hilbert Spaces, Matrix

1. Introduction

Studies have been done on generalized derivations, inner derivations, aspects of the underlying algebra $B(H)$ of these derivations and the structures of the operators inducing the derivations. An operator $T_{\text {is called }} D_{\text {-symmetric, if the closure of }}$ the derivation δ_{A} is equal to the closure of the derivation $\delta_{T^{*}}$ in the norm topology. Anderson, Deddens and Williams ${ }^{[1]}$ showed that for a trace class operator $\tau, T P=P T$ implies that $T^{*} P=P T^{*}$ if T is $D_{\text {-symmetric operator. A generalization of }}$ this concept was used in ${ }^{[13]}$ to define a class of pairs of operators $A, B \in B(H)$ say, such that $B T=T A$, implies that $T^{*} \mathrm{P}=P T^{*}, T^{*}, P^{*}$ being the adjoints of T and B respectively and T an element of trace class operators i.e. $P_{\text {-symmetric }}$ operators. Salah ${ }^{[14]}$ constructed different C^{*}-algebras using the elements of $P_{\text {-symmetric operators i.e., }} A, B \in B(H)$ such that $T A=A T$ implies that $A^{*} T=T B^{*}$. Indeed by ${ }^{[13]}$, for $A, B \in B(H)$, if the pair (A, B) is generalized P-symmetric then: $\tau 0(\mathrm{~A}$, $\mathrm{B}), \mathfrak{l}(\mathrm{A}, \mathrm{B})$ and $\kappa(\mathrm{A}, \mathrm{B})$ are C^{*}-algebras w^{*}-closed in $B(H) \times B(H)$ and $\tau(A, B)$ is a bilateral ideal of $l(A, B)$. Continuity of derivations as mappings on different algebras is an important concept which has been fairly researched on. Kaplansky ${ }^{[8]}$ and later Sakai ${ }^{[15]}$, proved that a derivation δ^{δ} of a C^{*}-algebra is automatically norm-continuous. This idea was later employed by Kadison ${ }^{[6]}$ to show that such derivation is also continuous in the ultra-weak topology only if such a derivation is of an algebra of operators acting on a Hilbert space. Johnson ${ }^{[5]}$ and later Sinclair ${ }^{[17]}$ proved the automatic norm continuity of derivations of a semi-simple Banach algebra. Ringrose ${ }^{[12]}$ used cohomological notation to prove that derivations from a C^{*}-algebra into a Banach-Module are automatically norm continuous, and that for appropriate class of dual algebra modules, they are continuous also relative to the ultraweak topology on the algebra and the weak *-topology on the module ${ }^{[12]}$.
A linear mapping on an algebra X into an $X_{\text {-bimodal }} M_{\text {is called a local derivation if for each } T \in A}$, there is a derivation δ_{T} of $X_{\text {into }} M_{\text {such that }} \delta_{T}=\delta_{T}(T){ }^{[7]}$. Most of the studies on local derivations have been focused on finding the conditions which imply that a local derivation is a derivation. It is shown by Bresar ${ }^{[9]}$ that in certain algebra, derivations can be characterized by some properties which local derivations trivially have, for example; Let X be a von Neumann algebra and let ${ }^{M}$ be a normed
 A linear mapping T on a complex unital Banach algebra A is spectrally bounded if $r(T x) \leq M r(x)$ for all $x \in X$ and some $M \geq 0$ where $r($.$) denotes the spectral radius { }^{[4]}$. Bresar ${ }^{[9]}$ affirmed the fact that the image δ_{X} of an inner derivation δ of $X_{\text {is }}$ contained in the radical radX of X if and only if δ is spectrally bounded, where $\operatorname{rad} X$ is the Jacobson radical. His argument
was essentially based on the results due to Ptak ${ }^{[11]}$, that a spectrally bounded inner derivation has the property that $\delta^{2} X \subseteq \theta(X)$, the set of quasinilpotent elements of X. Curto ${ }^{[4]}$ later on characterized the generalized inner derivations on a unital Banach algebra which are spectrally bounded. In particular, ${ }^{[4]}$ simplified the argument due to ${ }^{[9]}$, that every spectrally bounded inner derivation that maps into the radical is attainable ${ }^{[4]}$. Suppose $L(X, Y)$ is a space of all linear maps between Banach spaces X and Y, and S is a subset of $L(X, Y)$, a mapping $\Delta: X \mapsto T$ is said to be weak-2-local S map if for every $x, y \in X$ and $\phi \in Y^{*}$, there exists $T_{x, y, \phi} \in S$, depending on x, y and ϕ satisfying $\phi \Delta(x)=\phi T_{x y, \phi}(x)$, and $\phi \Delta(y)=\phi T_{x, y, \phi}(y)$. The idea of weak-2-local derivations and automorphisms was introduced by Semrl ${ }^{[16]}$ and explored extensively in ${ }^{[3]}$ and ${ }^{[2]}$. In ${ }^{[10]}$, Niazi and others proved that every weak-2-local derivation on a finite dimensional C^{*} - algebra is a linear derivation, and every weak2-local *-derivation on $B(H)$ is a linear $*$-derivation. It was then proved that every (weak)-2-local derivation on $C_{0}(L, A)$ is a linear derivation ${ }^{[3]}$. Consequently, ${ }^{[3]}$ also showed that if B is an atomic von Neumann or a compact C^{*}-algebra, then every weak-2-local derivation on $C_{0}(L, B)$ is a linear derivation. Furthermore, for a general von Neumann algebra ${ }^{M}$, every 2-local derivation on $C_{0}(L, M)$ is a linear derivation.
We begin by applying the properties of orthogonal projections P and Q to construct a new orthogonal projection $P-Q$. We then proceed to apply these properties to give examples of the same on finite dimensional Hilbert space using matrices. We then construct a derivation $\delta_{P, Q}(X)=P X-X Q$ and show that $\delta_{P, Q}$ is a bounded linear operator which is continuous and positive. Finally, we calculate the norm $\left\|\delta_{P, Q}\right\|{ }_{\text {of the then }} \delta_{P, Q}$ and determine the norm and numerical radii inequalities for the same. In each of the properties of $\delta_{P, Q}$ discussed, we infer the results to the case when $P=Q$ to obtain the result for inner derivation δ_{P}. We shall denote set of all orthogonal projections acting on a Hilbert space ${ }^{H}$ by $P_{0}(H)$.

Remark: The set of all derivations induced by orthogonal projections shall be denoted by $D_{o p}[B(H)]$. Similarly, we shall denote by $D_{o p}^{I}[B(H)]$ and $D_{o p}^{G}[B(H)]$ respectively the sets of all inner derivations and generalized derivations induced by orthogonal projections. It is noted that if $P=Q$ then $D_{o p}^{G}[B(H)] \Leftrightarrow D_{o p}^{I}[B(H)]$. Let H be a Hilbert space with a decomposition $H=V \oplus W^{\perp}$ where W^{\perp} is the orthogonal compliment of W. Suppose that $P, Q \in P_{0}(H)$ are orthogonal projections on V and W respectively, then for any arbitrary linear operator X, there exists a new orthogonal projection $\delta_{P Q}(X)=(P X-X Q) \in D_{O P}[B(H)]$ which acts on the subspace $V \oplus W^{\perp}$.

2. Basic definitions

Definition 2.1: (52, Section 1). Let $B(H)$ be a C^{*}-algebra of all bounded linear operators on a Hilbert space H. An operator $T_{A, B}: B(H) \mapsto B(H)$ is called an elementary operator if it has the representation $T(X)=\sum_{i=1}^{n} A_{i} X B_{i}, \forall X \in B(H)$ where A_{i}, B_{i} are fixed in $B(H)$ or $M(H)$, the multiplier algebra of $B(H)$. For A and ${ }^{B}$ fixed in $B(H)$, for all $X \in B(H)$ we define the particular elementary operators:
(i). the left multiplication operator (implemented by $A_{\text {) }} L_{A}: B(H) \mapsto B(H)$ is defined by

$$
L_{A}(X)=A X
$$

(ii). the right multiplication operator (implemented by B) $R_{B}: B(H) \mapsto B(H)$ is defined by

$$
R_{B}(X)=X B
$$

(iii). the generalized derivation (implemented by A, B) $\delta_{A}: B(H) \mapsto B(H)$ is defined by

$$
\delta_{A, B}(X)=A X-X B
$$

(iv). the inner derivation (implemented by A) $\delta_{A}: B(H) \mapsto B(H)$ is defined by

$$
\delta_{A}(X)=A X-X A
$$

(v). the basic elementary operator (implemented by A, B)

$$
M_{A, B}(X)=A X B
$$

(vi). the Jordan elementary operators (implemented by A, B)

$$
U_{A, B}(X)=A X B+B X A, \forall X \in B(H) .
$$

Definition 2.2: Let $M_{n}(\mathbb{K})$ be a space of matrices over \mathbb{K}. The norm of $A \in M_{n}(\mathbb{K})$ is a function defined by $\|A\|=\max \{\|A \bar{v}\|:\|\bar{v}\|=1\}$ for a vector ${ }^{v}$ which obeys all the norm properties and in addition, it is submultiplicative and subadditive i.e., $\|A B\| \leq\|A\|\|B\|$ and $\|A+B\| \leq\|A\|+\|B\|_{\text {for }} A, B \in M_{n}(\mathbb{K})$

Example 2.3: The following are some examples of the matrix (operator) norms:
(i). One-norm (the $\ell_{\text {-norm) }}^{1}\|T\|_{1}=\sum_{j=1}^{n}\left|a_{i j}\right|$. Let $M_{n}(\mathbb{R}): \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be given by $T=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$ thus for unit vectors $x_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and $x_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ then $T\left(x_{1}\right)=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $T\left(x_{2}\right)=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad$ so $\quad\left\|T\left(x_{1}\right)\right\|=\left\|\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\|=|1|+|3|=4$ and $\left\|T\left(x_{2}\right)\right\|=\left\|\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\|=|2|+|1|=3$ therefore $\|T\|_{1}=4$
(ii). Max-norm (the $\left.{ }^{\infty}{ }_{\text {-norm }}\right)\|T\|^{\infty}=\max \left|a_{i j}\right|$ Let T^{T} be as given in (i) above and vectors $x_{1}=\left[\begin{array}{c}1 \\ 1\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]_{\text {then }}$ $T\left(x_{1}\right)=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $T\left(x_{2}\right)=\left[\begin{array}{c}1 \\ -2\end{array}\right]$
(iii). Two-norm (the ℓ^{2}-norm on $T^{\prime}\|T\|_{2}=\left(\sum_{j=1}^{n}\left|a_{i j}\right|\right)^{\frac{1}{2}}$.

Definition 2.4: (1, Definition 2.1). Let $T \in B(H)_{1} \mapsto B(H)_{2}$ be a bounded linear operator and H_{1}, H_{2} finite dimensional Hilbert spaces. The norm of the operator T^{T} is the smallest real number $\|T\|$ such that $\|T x\| \leq\|T\|\|x\|$ where, $x \in H 2$, i.e $\|T\|=\sup \{\|T x\|:\|x\|=1\}$.

Remark 2.5: Given that $T \in B(H)$ is a compact operator, then we denote by $\left\{s_{j}(T)\right\}$, the singular values of T i.e the eigenvalues of $|T|=\left(T T^{*}\right)^{\frac{1}{2}}$. Schatten-p norm is an operator norm defined by $\|T\|_{p}=\left(\sum_{j=1}^{\infty} s_{j}^{p}(T)\right)^{\frac{1}{p}}$ for $1 \leq \mathrm{p} \leq \infty$. For strictly positive p, the class of operators which admits the norms $\|T\|_{p}=\left(\sum_{j=1}^{\infty} s_{j}^{p}(T)\right)^{\frac{1}{p}}$ are called Schatten- p operators and are denoted by $C_{p} C_{p}$ is an ideal in $B(H)$ of compact operators whose $\|T\|_{p}<\infty$, so that $\left\||T|^{2}\right\|_{p}=\|T\|_{p}^{2}$ for a finite p. The C_{p} class has two subclasses for $p=1$ and $p=2$ given by:
(i). Taxicab norm $\left(C_{11}\right)$: For $\mathrm{p}=1$ then $\|T\|_{1}=\left(\sum_{j=1}^{\infty} s_{j}(T)\right)$ and $\left\||T|^{2}\right\|_{\frac{1}{2}}=\|T\|_{1}^{2}$. The class of all operators which admit the norm $\|T\|_{1}=\left(\sum_{j=1}^{\infty} s_{j}(T)\right)$ are called is called Trace class and is denoted by C_{1}
(ii). Hilbert-Schmidt norm $\left(C_{2}\right)$: For $p=2$ then $\|T\|_{1}=\left(\sum_{j=1}^{\infty} s_{j}(T)\right)^{\frac{1}{2}}$ and $\left\||T|^{2}\right\|^{\frac{1}{2}}=\|T\|_{1}^{2}$ The class of all operators which admit the norm $\|T\|_{1}=\left(\sum_{j=1}^{\infty} s_{j}(T)\right)^{\frac{1}{2}}$ are called is called Trace class and is denoted by C_{2}

Remark 2.6: The effect of an operator on a vector is a measure of how much an operator amplifies a norm of a unit vector. Operator norm $\|T\|$ is generally a vector norm on the range of the operator $T_{\text {such that }}\left\|T^{2}\right\| \leq\|T\|^{2}$. An operator acting on a finite dimensional Hilbert space can be represented by a matrix.

Definition 2.7: Suppose that $U, V, T \in B(H)$, where ${ }^{U}$ and V are both unitary and A being compact, then a norm III. III defined by $\|\|U T V\|\|=\|T\| \|$ is called unitarily invariant norm.

Definition 2.8: Let ${ }^{H}$ be a complex Hilbert space and ${ }^{T}$ be a linear operator from ${ }^{H}$ to itself. ${ }^{T}$ is said to be positive if $\langle T x, x\rangle \geq 0$, for all $x \in H$. This is denoted by $T \geq 0$ or $0 \leq T . T$ is then said to be strictly positive or positive definite if $\langle T x, x\rangle>0$, for all $x \in H \backslash\{0\}$.

3. Results and discussions

We shall denote set of all orthogonal projections acting on a Hilbert space H by $\mathrm{P} 0(\mathrm{H})$. In the sequel, we shall consider two decompositions of H^{n} thus; $H^{n}=H_{1} \oplus H_{2}$ and $H^{n}=H_{11} \oplus H_{22}$ so that $H^{n}=H_{1} \oplus H_{2}=H_{11} \oplus H_{22}$

Lemma 3.0.1: Suppose there exist two distinct ways of decomposing $H^{n}, H^{n}=H_{1} \oplus H_{2}$ and $H^{n}=H_{11} \oplus H_{22}$ and if $H_{1} \subset H_{22}$ or $H_{11} \subset H_{2}$, then: $H^{n}=\left(H_{1} \oplus H_{11}\right) \oplus\left(H_{2} \cap H_{22}\right)$:

Proof: Given that $H_{1} \subset H_{22}$, then $H_{1}+\left(H_{2} \cap H_{22}\right)=\left(H_{1}+H_{2}\right) \cap H_{22}=H^{n} \cap H_{22}=H_{22}$: and because $H_{1} \cap\left(H_{2} \cap H_{22}\right)=\left(H_{1} \cap H_{2}\right) \cap H_{22}=\{0\}$, we have $H_{22}=H_{1} \oplus\left(H_{2} \cap H_{22}\right)$.

Therefore: $\mathrm{Hn}=H_{11} \oplus H_{22}=H_{11} \oplus H_{1} \oplus\left(H_{2} \cap H_{22}\right)=\left(H_{1} \oplus H_{11}\right) \oplus\left(H_{2} \cap H_{22}\right):$ When H11 \subset H22, the same result follows by using $H_{2}=H_{11} \oplus\left(H_{2} \cap H_{22}\right)$
We now give some examples to illustrate the construction of matrices of orthogonal projections.
Example 3.0.2: Find the matrix for the orthogonal projection $P: \mathbb{R}^{3} \rightarrow W$ given that W is generated by the vectors $v_{1}=(1,1,1)$ and $v_{2}=(1,0,1)$.
To see this let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right], A^{T}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$,
$A^{T} A=\left[\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right]$ and $\left(A^{T} A\right)^{-1}=\left[\begin{array}{cc}1 & -1 \\ -1 & \frac{3}{2}\end{array}\right]$
Therefore, $Q=A\left(A^{T} A\right)^{-1} A^{T} . \quad Q=\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & \frac{3}{2}\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$

$$
\begin{gathered}
=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]_{\text {for any point }}(x, y, z) \in \mathbb{R}^{3} \\
Q(x, y, z)=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left(\frac{x+z}{2}, y, \quad \frac{x+z}{2}\right)
\end{gathered}
$$

Remark 3.0.3: Suppose that H^{n} is an n-dimensional Hilbert space, then $P\left(H^{n}\right)$ and $P_{0}\left(H^{n}\right)$ shall be used to denote the set of all projections acting on H^{n} and the set of all orthogonal projections acting on H^{n} respectively. Naturally, $P_{0}(H) \subset P(H) \subset B(H)$. The ${ }^{B(H)}$ used in this study is commutative. We begin by discussion of the properties of $P\left(H^{n}\right)$ and $P_{0}\left(H^{n}\right)$.

Theorem 3.0.4: Suppose that $P, Q \in P_{0}(H)$ onto H_{1} and $H_{l l}$ respectively, then the following are equivalent:
(i). $P-Q_{\text {is an orthogonal projection onto }} H_{11} \cap H_{1}^{\perp}$.
(ii). $P Q=Q P=P$.
(iii). $H_{22} \subset H_{2}$.

Proof:

(i). \Rightarrow (ii). Suppose that $P, Q \in P_{0}(H)$.

By the projection property, $(Q-P)^{2}=Q-P \Rightarrow 2 P=P Q+Q P$.
Now' $Q(2 P=P Q+Q P) \Rightarrow 2 Q P=Q P Q+Q^{2} P$
and $(2 P=P Q+Q P) Q \Rightarrow 2 P Q=P Q 2+Q P Q$
which means that $P Q=Q P=P$.

$$
\text { (ii). } \Rightarrow \text { (iii). }
$$

For any $x \in H^{n}, P x \in H_{1} \Rightarrow P x=Q P x \in H_{11}$ which means that $H_{1} \subset H_{11}$. Suppose $T_{m}=I_{n}-P_{j}(j=1,2, \ldots)$ then $P Q=P$ where $T_{1}=I_{1}-P, T_{2}=I_{2}-Q$ and $T_{1} T_{2}=T_{2}$ therefore $T_{2} x \in H_{22} \Rightarrow T_{2} x=T_{1} T_{2} x \in H_{2}$ so that $H_{22} \subset H_{2}$. (iii). \Rightarrow (ii). Given that $H_{22} \subset H_{2}$, then for every $x \in H_{n}, P x \in H_{1} \subset H_{11}$ which implies that $Q(P x) \Rightarrow Q P=P$ and since $H_{22} \subset H_{2}$, then $T_{2} x \in H_{22} \subset H_{2}$ for $x \in H^{n} \Rightarrow T_{1} T_{2} x=T_{2} x=T_{1} T_{2} T_{2} \Rightarrow\left(I_{n}-P\right)\left(I_{n}-Q\right)=\left(I_{n}-Q\right) \Rightarrow P Q=P$
(ii). $\Rightarrow(i)$.

For $x \in\left(H_{11} \cap H_{2}\right)$, then $(Q-P) x=T_{1} Q x=T_{1} x=x$.
But suppose that $x=x_{1}+x_{2}$
where $x_{1} \in H_{1}$ and $x_{2} \in H_{22}$
then $(Q-P) x=(Q-P) x_{1}+(Q-P) x_{2}$

$$
=Q T_{1} x_{1}+T_{1} Q x_{2}=0
$$

Therefore $(Q-P)$ is an orthogonal projection onto $H_{11} \cap H_{2}$ along $H_{1} \oplus H_{22} \cdot\left(H_{2}=H_{1}^{\perp}\right.$ and $\left.\quad H_{22}=H_{11}^{\perp}\right)$. Now taking $X \in B(H)$, for a commutative $B(H), X(P-Q)=X P-X Q=P X-X Q$ which is the desired derivation. Suppose that $p_{n}=\left\{f_{i}\right\}_{i=1}^{k}$ and $q_{n}=\left\{g_{j}\right\}_{j=1}^{k}$ are bases for H_{1} and H_{2} respectively with $H^{n}=H_{1} \oplus H_{2}$ and $P: H^{n} \rightarrow H_{1}, Q: H^{n} \rightarrow H_{2}$ then, $\left\{f_{i}\right\}_{i=1}^{k}-\left\{g_{j}\right\}_{j=1}^{k}=\gamma$ is a basis for $H_{11} \cap H_{1}^{\perp}$ which is the range for $\mathrm{P}-\mathrm{Q}$.

Corollary 3.0.5: Let $P, Q \in P_{0}(H)$, thenhe operator $P X-X Q$ gives the shortest distance between $H_{11} \cap H_{1}^{\perp}$ and H^{n}
Proof: First we recall that $P X-X Q$ projects every point in H^{n} orthogonally to $H_{11} \cap H_{1}^{\perp}$. Let $x_{1}, x_{2} \in\left(H_{11} \cap H_{1}^{\perp}\right) \subset H^{n}$, therefore for arbitrary $y \in H^{n}$, then $\left\|y-x_{1}\right\|^{2}$, $\left\|y-x_{2}\right\|^{2}<\operatorname{dist}\left(y, H_{11} \cap H_{1}^{\perp}\right)^{2}+\varepsilon$. Recall that $\left(H_{11} \cap H_{1}^{\perp}\right)$ and $\operatorname{dist}\left(H_{11} \cap H_{1}, H\right)=\inf f_{x^{\prime} \in H_{11} \cap H_{1}^{\perp}}\left\|y-x^{\prime}\right\|$.

So, by application of parallelogram law,
$\left\|x_{1}-x_{2}\right\|^{2}=2\left(\left\|y-x_{1}\right\|^{2}+\left\|y-x_{2}\right\|^{2}\right)-2\left\|y-\frac{1}{2}\left(x_{1}+x_{2}\right)\right\|^{2}$

$$
\leq 2 \varepsilon
$$

Therefore, there exists $t \in H_{11} \cap H_{1}^{\perp} t=(P-Q) x$ for some $x \in H^{n}$ such that $\|y-t\|=\operatorname{dist}\left(y, H_{11} \cap H_{1}^{\perp}\right)$. So, the approximant of H^{n} to $H_{11} \cap H_{1}^{\perp}$ is the orthogonal projection $P-Q$. Therefore, every $y \in H$ can be uniquely written as $y=x+x^{\prime}$ where $x^{\prime} \in\left(H_{11} \cap H_{1}^{\perp}\right)$ and $x \in\left(H_{11} \cap H_{1}^{\perp}\right)$.

Lemma 3.0.6: Given a compact operator $X \in B(H)$, then $P X$ and $X Q$ are also compact for $P, Q \in P_{0}(H)$
Proof: Suppose that $X \in B(H)$ is compact and $Q \in P_{0}\left(H^{n}\right)$ then P is bounded. Let $x_{n} \in H^{n}$ be a bounded sequence. Then $X Q$ is also bounded and contains a convergent subsequence. So $X Q$ is compact. Now since X is compact, therefore $X x_{n}$ contains a convergent subsequence $\begin{aligned} & X x_{n_{k}} \\ & \text { which converges in the range of } \\ & X\end{aligned}$. So $P X x_{n_{k}}$ also converges.

Theorem 3.0.7: Suppose that $P, Q \in P_{0}\left(H^{n}\right)$ and a compact $X \in B(H)$, then $\delta_{P Q Q}(X)$ is compact.
Proof: Let there exist bases p_{n}, q_{n} and b_{n} in H^{n} for P, Q and X respectively in H^{n} so that $(P X-X Q)$ takes the form, $\gamma=p_{n} b_{n}-b_{n} q_{n \text {. Let }} \gamma$ be compact, $U_{\text {a closed unit ball of }}\left(H_{11} \cap H_{1}^{\perp}\right)$ and z_{n} a sequence of $\gamma(U)$. It suffices to show that there exists a subsequence of x_{n} that converges to ${ }^{U}$. By the supposition that γ is compact, for every $n \in \mathbb{N}, z_{n}=\gamma x_{n}$ and x_{n} belongs to the set ${ }^{U}$. So, there exists a subsequence $x_{n_{k}}$ which converges weakly to $x \in U$. We show that $\gamma x_{n_{k} \text { converges }}$ to γx_{n}. Let γ_{n} be a sequence of finite rank operator that converges to γ. For any $m^{\prime} \in \mathbb{N}, \gamma_{m}$ is a closed set which is bounded in a finite dimensional subspace $\left(H_{11} \cap H_{1}^{\perp}\right)$ of H^{n}, hence compact. So $\gamma_{m r} x_{n_{k},}, k \in \mathbb{N}$, converges to $\gamma_{m \prime}(x)$. Given $\in>0$, there exists $N \in \mathbb{N}$ such that $\left\|\gamma-\gamma_{N}\right\|<\frac{\epsilon}{3}$. Furthermore, given a fixed N, then $k^{\prime} \in \mathbb{N}$, so that $\left\|\gamma_{N} x_{n_{k}}-\gamma_{N} x\right\| \leq \frac{\epsilon}{3}$ for $k \geq k^{\prime}$.
So that:

$$
\begin{aligned}
& \left\|\gamma_{N} x_{n_{k}}-\gamma x\right\| \leq\left\|(\gamma-\gamma N) x_{n_{k}}\right\|+\left\|\gamma_{N}\left(x_{n_{k}}-x\right)\right\|+\left\|\left(\gamma_{N}-\gamma\right) x\right\| \\
& \leq \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}
\end{aligned}
$$

So, $z_{n_{k}}=\gamma x_{n_{k}}$ converges to $\gamma x \in \gamma(U)$ so that $\gamma(U)$ is compact. Suppose that $\gamma(U)$ is compact, then the union $\mathrm{U}_{z_{n} \in Y(U)} B\left(z_{n}, \frac{1}{n}\right)$ is an open covering of the compact set $\gamma(U)$, and therefore we can obtain vectors $x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{k}^{(n)} \in H^{n}$ such that $\mathrm{U}_{i=1}^{k} U\left(\gamma x_{i}^{(n)}, \frac{1}{n}\right)$ is a covering of $\gamma(U)$. Suppose that H^{n} span $\gamma x_{i}^{(n)}, i \in \mathbb{N}, T$ an arbitrary orthogonal projection on H^{n}.
Let also $\gamma_{n}=T_{n} \gamma$.

Now because $T \gamma \in \gamma_{n}$ is the point in H^{n} closest to γx, therefore

$$
\left\|\gamma x-\gamma_{n} x\right\| \leq \operatorname{in} f_{1 \leq i \leq n}\left\|\gamma x-\gamma x_{i}^{(n)}\right\|<\frac{1}{n}<\epsilon
$$

So, $\gamma_{n} \rightarrow \gamma_{\text {as }} n \mapsto \infty$. Which implies that $D_{o p}^{G}[B(H)]$ is a compact ideal of $B(H)^{n}$. Now since $\gamma_{n} \rightarrow \gamma \in D_{o p}^{G}[B(H)]$ the assertion is proved.

Example 3.0.8: Let $H^{n}=\ell^{2}$ and $m \times m_{\text {operators }} P=\left[a_{i j}\right]_{\text {and }} Q=\left[b_{i j}\right]$
such that

$$
\begin{aligned}
& \quad a_{i j}=\left\{\begin{array}{ll}
p_{n}, & \mathrm{i}=\mathrm{j} \\
0, & \mathrm{i} \neq \mathrm{j}
\end{array}\right. \text { and }
\end{aligned} b_{i j}=\left\{\begin{array} { l l }
{ q _ { n } , } & { \mathrm { i } = \mathrm { j } } \\
{ 0 , } & { \mathrm { i } \neq \mathrm { j } }
\end{array} ~ \left(\begin{array}{l}
\text { for } n=m-1, q_{n}^{*}\left(q_{n}-1\right)=0 \text { and } \mathrm{m} \geq 2 .
\end{array}\right.\right.
$$

Let the operators P and Q be bounded i.e. for $n \geq 1, p_{n}=\left(p_{1}, p_{2}, \ldots\right) \in \ell^{\infty}$ and $q_{n}=\left(q_{1}, q_{2}, \ldots\right) \in \ell^{\infty}$. Let P be majorized by Q or Q majorized by P so that $\left(p_{n}-q_{n}\right)$ is also diagonal and $\left(p_{n}-q_{n}\right)=\left(\left(p_{1}-q_{1}\right),\left(p_{2}-q_{2}\right), \ldots\right) \in \ell^{\infty}$ Suppose that $\lim _{n \rightarrow \infty}\left(p_{n}-q_{n}\right)=0$ and $(P-Q)_{n}=\operatorname{diag}\left(\left(p_{1}-q_{1}\right),\left(p_{2}-q_{2}\right), 0,0, \ldots\right)$, then $(P-Q)_{n}$ is compact and $\left\|(P-Q)-(P-Q)_{n}\right\|=\sup \left\{\left|p_{n}-q_{n}\right| \geq n+1\right\} \rightarrow 0$. For an arbitrary $X \in B(\ell)^{2}$, then $P X-X Q$ is also compact.
Suppose that $x_{n} \in \ell^{2}$, with the following conditions, $\left\|x_{n}\right\| \leq 1,\|(P X-X Q) x\|=\|P X-X Q\|$ and some $\alpha, \beta \in \mathbb{F}$, such that $\quad \lim _{n \rightarrow \infty}\left\langle\left(p_{n}-q_{n}\right) x_{n}, x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle\left(p_{n}-q_{n}\right)^{2} x_{n}, x_{n}\right\rangle$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left\langle\left(p_{n}-q_{n}\right)^{*} x_{n}, x_{n}\right\rangle \\
& =|\alpha-\beta| .
\end{aligned}
$$

Thus $|\alpha-\beta| \in \mathbb{R}^{+}$.
Example 3.0.9: Let $H^{n}=L^{2}(\mathbb{T})$ be the space of 2π-periodic functions and a constant function $u=\frac{1}{\sqrt{2} \pi}$ with $\|u\|=1$, then the orthogonal projections $P u$ and $Q u$ are defined by $P u f=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x$ and $Q u f=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(x) d x$. So $P-Q=\frac{1}{2 \pi} \int(f(x)-g(x)) d x$ and so for $X \in B\left(L^{2}(\mathbb{T})\right)$, then $P X-X Q=\frac{1}{2 \pi} \int_{0}^{2 \pi} b(x)(f(x)-g(x)) d x$ is compact. We apply the following example in showing how a matrix of $\delta_{P, Q}$ can be constructed.

Example 3.1.0: Consider two sets of vector $v_{1}=(0,1,0), v_{2}=(0,1,1)$ and $u_{1}=(1,1,1), u_{2}=(1,0,1)$. By simple calculation, we get that

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
0 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right], A^{T}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], A^{T} A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right],\left(A A^{T}\right)^{-1}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
& A\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { thus we get an orthogonal projection }
\end{aligned}
$$

$$
P=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Similarly for the second set of vectors, we get another orthogonal projection

$$
X Q=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]
$$

Now for an arbitrary operator with a matrix representation

$$
X=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]_{\text {then }} \quad P X=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]_{\text {and }} \quad X Q=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right]_{\text {so that }} \quad P X-X Q=\left[\begin{array}{ccc}
\frac{-1}{2} & 0 & \frac{-1}{2} \\
\frac{-1}{2} & 1 & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right] .
$$

Example 3.1.1: Let H^{n} be a complex four-dimensional Hilbert space and $B(H)$ algebra of 4×4 matrices. We take $P_{0}(H)$ to be the subalgebra of diagonal matrices, so $\delta_{P, Q}: P_{0}(H) \rightarrow B(H)$. Suppose that $P, Q \in P_{0}(H)$ are selfadjoint orthogonal projections onto H_{1} and H_{11} spanned by the orthogonal unit vectors

$$
\begin{aligned}
& x_{1}=\frac{1}{2 \sqrt{3}}\left(1,-1+i \sqrt{3}, \frac{1}{\sqrt{14}}(4-5 i \sqrt{3}), \frac{1}{\sqrt{14}}(-2+i \sqrt{3})\right) \\
& x_{2}=\frac{1}{2 \sqrt{3}}\left(1,-1-i \sqrt{3}, \frac{1}{\sqrt{14}}(-2-i \sqrt{3}), \frac{1}{\sqrt{14}}(4+5 i \sqrt{3})\right)
\end{aligned}
$$

and the unit vector

$$
x_{3}=\frac{1}{2 \sqrt{3}}\left(1,2, \sqrt{\frac{7}{2}}, \sqrt{\frac{7}{2}}\right) \text { respectively. }
$$

Then for an arbitrary operator $X \in B(H)$ with $\|X\|=1$, operator $P X-X Q$ has a Hermitian matrix Given by

$$
\frac{1}{12}\left[\begin{array}{cccc}
1 & -4 & \frac{1}{\sqrt{14}}(-5+6 i \sqrt{3}) & \frac{1}{\sqrt{14}}(-5-6 i \sqrt{3}) \\
-4 & 4 & -2 \sqrt{14} & -2 \sqrt{14} \\
\frac{1}{\sqrt{14}}(-5-6 i \sqrt{3}) & -2 \sqrt{14} & \frac{7}{2} & \frac{1}{14}(-95+12 i \sqrt{3}) \\
\frac{1}{\sqrt{14}}(-5+6 i \sqrt{3}) & -2 \sqrt{14} & \frac{1}{14}(-95-12 i \sqrt{3}) & \frac{7}{2}
\end{array}\right]
$$

which is also idempotent. We now consider the linearity of $\delta_{P, Q}$ in the following proposition.
Proposition 3.1.2: A derivation $P X-X Q$ is linear for an arbitrary $X \in B(H)$.
Proof: Let $\left\{f_{i}\right\}_{i \in I}$ and $\left\{q_{i}\right\}_{i \in J}$ be two orthonormal bases for $H_{11} \cap H_{1}^{\perp}$ and $\left(H_{11} \cap H_{1}^{\perp}\right)^{\perp}$, respectively, and $T=I-(P-Q)$ be the orthogonal projection on $\left(H_{11} \cap H_{1}^{\perp}\right)^{\perp}$. Suppose $X \in B(H)$ then for $x_{1}, x_{2} \in H$ and $\alpha, \beta \in \mathbb{K}$, then by theorem 4.12, there exist $\gamma=\left(p_{n} b_{n}-b_{n} q_{n}\right)$ such that

$$
\begin{aligned}
\gamma\left(\alpha x_{1}+\beta x_{2}\right) & =\gamma \sum_{i \in I} \sum_{n}\left\langle\alpha x_{1}+\beta x_{2}, f_{i}\right\rangle \\
= & \sum_{i \in I} \sum_{n}\left\langle\left(p_{n} b_{n}-b_{n} q_{n}\right)\left(\alpha x_{1}+\beta x_{2}\right), f_{i}\right\rangle \\
= & \sum_{i \in I} \sum_{n}\left\langle\alpha p_{n} b_{n} x_{1}+\beta p_{n} b_{n} x_{2}-\alpha b_{n} q_{n} x_{1}-\beta b_{n} q_{n} x_{2}, f_{i}\right\rangle \\
= & \alpha \sum_{i \in I} \sum_{n}\left\langle p_{n} b_{n} x_{1}, f_{i}\right\rangle+\beta \sum_{i \in I} \sum_{n}\left\langle p_{n} b_{n} x_{2}, f_{i}\right\rangle-\alpha \sum_{i \in I} \sum_{n}\left(b_{n} q_{n} x_{1}, f_{i}\right\rangle-\beta \sum_{i \in I} \sum_{n}\left(b_{n} q_{n} x_{2}, f_{i}\right\rangle \\
= & \alpha \sum_{i \in I} \sum_{n}\left\langle\left(p_{n} b_{n}-b_{n} q_{n}\right) x_{1}, f_{i}\right\rangle_{+} \beta \sum_{i \in I} \sum_{n}\left\langle\left(p_{n} b_{n}-b_{n} q_{n}\right) x_{2}, f_{i}\right\rangle
\end{aligned}
$$

$$
=\alpha \gamma x_{1}+\beta \gamma x_{2}
$$

Corollary 3.1.3: A derivation $P X-X Q$ is linear on (i) H^{n} and (ii) $B\left(H^{n}\right)$.
Proof: (i). Linearity in H^{n} : Given that $P, Q \in P_{0}(H)$, by [76, lemma 2] we can obtain a pair $x, y \in H$ and $\alpha, \beta \in \mathbb{K}$ and on setting $\lim _{n}\left\|P x_{n}\right\| \Rightarrow\|P\|, \lim _{n}\left\|Q x_{n}\right\| \Rightarrow\|Q\|$ and $\lim _{n}\left\langle Q x_{n}, x_{n}\right\rangle \rightarrow|\mu|, \lim _{n}\left\langle P x_{n} x_{n}\right\rangle \rightarrow|\lambda|$ and also setting $Q x=\alpha x$ $+\beta y, P x=\alpha^{*} x+\beta^{*} y$ with $\langle x, y\rangle=0$ and $\|x\|=\|y\|=1$. Set also that $X x=x, X y=-y$ and also that X acts on $\{x, y\}$ then, $P-Q_{\text {is an orthogonal projection onto } H_{11} \cap H_{1}^{\perp} \text {. On respective post and premultiplication of } P \text { and } Q \text { of } P-Q \text { by } X, ~ . ~}^{\text {a }}$ gives a new operator of the form γ such that for $x \in H$,

$$
\begin{aligned}
\gamma x & =P x-\alpha^{*} X x+\beta^{*} X y \\
& =\alpha x+\beta y-\alpha^{*} x+\beta^{*} y \\
& =\left(\alpha-\alpha^{*}\right) x+\left(\beta+\beta^{*} y, \text { for } \alpha x, \beta y \in H^{n}\right.
\end{aligned}
$$

and on the other hand

$$
\begin{aligned}
\delta_{P, Q}(X)(\alpha x+\beta y) & =\gamma(\alpha x+\beta y) \\
& =\gamma \alpha x+\gamma \beta y \\
& =\alpha \delta_{P, Q}(X) x+\beta \delta_{P, Q}(X) y
\end{aligned}
$$

(ii). Linearity in $B\left(H^{n}\right)$: By similar calculation, we can find a pair of operators $X, Y \in B(H)$ and $\alpha, \beta \in \mathbb{K}$

$$
\begin{aligned}
& \delta_{P Q Q}(\alpha X+\beta Y) x=\{P(\alpha X+\beta Y)-(\alpha X+\beta Y) Q\} x \\
& =\{\alpha P X+\beta P Y-\alpha X Q-\beta Y Q\} x \\
& =\alpha P X-\alpha X Q+\beta P Y-\beta Y Q x \\
& =\left\{\alpha \delta_{P, Q}(X) x+\beta \delta_{P Q Q}(Y)\right\} x .
\end{aligned}
$$

So, $\delta_{P, Q} X$ is linear on both H^{n} and $B(H)$.
Proposition 3.1.4: Suppose that $P, Q \in P(H)$ and an arbitrary $X \in B(H)$, then $\delta^{2}{ }_{P, Q}(X)=P X+X Q-2 P X Q$.

Proof:

$$
\begin{aligned}
\delta 2 P, Q(X) & =\delta P, Q(P X-X Q) \\
& =P(P X-X Q)-(P X-X Q) Q \\
& =P P X-P X Q-P X Q+X Q Q \\
& =P P X+X Q Q-2 P X Q \\
& =P X+X Q-2 P X Q
\end{aligned}
$$

Theorem 3.1.5: Suppose that $P, Q \in P_{0}(H)$, then the derivation $\delta_{P, Q}(X)=P X-X Q$ is bounded from below.
Proof: By the definition of $\delta_{P, Q}$ we observe that $\delta_{P, Q}(X)=p_{n}-q_{n}$ is meaningful for the bases p_{n} and q_{n} of P and Q respectively with $\sum_{n}\left\|f_{n}\right\|^{2}=1$. Since p_{n} and q_{n} are bounded, from the definition of $\delta_{P, Q}(X)$, we have,

$$
\begin{gathered}
\left\|\delta_{P, Q}\left(f_{n}\right)\right\|^{2}=\left\|\sum_{n}\left(p_{n} f_{n}-f_{n} q_{n}\right)\right\|^{2} \\
\geq \sum_{n}\left\|p_{n} f_{n}\right\|^{2}-\sum_{n}\left\|f_{n} p_{n}\right\|^{2}
\end{gathered}
$$

$$
=\left\{\Sigma_{n}\left|p_{n}\right|^{2}-\Sigma_{n}\left|q_{n}\right|^{2}\right\}\left\|f_{n}\right\|^{2} .
$$

Since the difference of finite summation of p_{n} and q_{n} is also bounded, by taking supremum of both sides of the above inequality gives $\|\delta\| \geq\left\{\Sigma_{n}\left|p_{n}\right|^{2}\right\}^{1 / 2}-\left\{\Sigma_{n}\left|q_{n}\right|^{2}\right\}^{\frac{1}{2}}$.

Proposition 3.1.6: Suppose that $P, Q \in P_{0}(H)$, then the derivation $\delta_{P, Q}$ is bounded from above.
Proof: Let P, Q and $X_{\text {be induced by }} p_{n}, q_{n}$ respectively and f_{n} as arbitrary elements of $B(H)$. By the definition of δ, we have for $\left\{\left\|\sum_{n} f_{n}\right\|^{2}\right\}=1$ and $\left\|\sum_{n} f_{n}\right\| \leq 1$ that

$$
\begin{aligned}
& \left\|\delta_{P, Q}\right\|^{2}=\left\|\sum_{n}\left(p_{n} f_{n}-f_{n} q_{n}\right)\right\|^{2} \\
& \leq\left\|\sum_{n} p_{n} f_{n}\right\|^{2}+\left\|\sum_{n} f_{n} q_{n}\right\|^{2} \\
& \left.\leq\left\{\sum_{n}\left|p_{n}\right|^{2}+\sum_{n}\left|q_{n}\right|^{2}\right\}\left\|\sum_{n} f_{n}\right\|^{2}\right\} \\
& =\left\{\sum_{n}\left|p_{n}\right|^{2}+\sum_{n}\left|q_{n}\right|^{2}\right\} \\
& =\left\{\sum_{n}\left|p_{n}\right|+\sum_{n}\left|q_{n}\right|\right\} .
\end{aligned}
$$

Taking the supremum of both sides of the inequality gives us $\left\|\delta_{P, Q}(X)\right\| \leq\left\{\Sigma_{n}\left|p_{n}\right|\right\}^{\frac{1}{2}}+\left\{\Sigma_{n}\left|q_{n}\right|\right\}^{\frac{1}{2}}$.
Proposition 3.1.7: Suppose that $P, Q \in P_{0}(H)$, then $\delta_{P, Q}(X)$ has a bounded inverse on $H_{11} \cap H_{1}^{\perp}$ if and only if $\delta_{P, Q}(X)$ is bounded from below.

Proof: From the definition of $\delta_{P, Q}$, we have that $\delta_{P, Q}(X)$ is a transformation $\delta_{P, Q}(X): H^{n} \rightarrow H_{11} \cap H_{1}^{\perp}$. Now suppose that p_{n}, q_{n} and x_{n} as described in theorem 4.12 are all bounded from, then so is γ, and therefore there exists a real number $m>0$ such that $\|\gamma(x)\| \geq m\|x\| \forall x \in H^{n}$. This means that γ is a one-to-one map. Thus γ is a bijection and hence has an inverse, $\gamma^{-1}: B(H) \rightarrow P_{0}(H)^{n}$ which is linear and onto. We then show that γ^{-1} is bounded and $\left\|\gamma^{-1}\right\| \leq \frac{1}{m}$.
Let $y \in H_{11} \cap H_{1}^{\perp}$ and $P^{\prime}, Q^{\prime} \in P_{0}(H)^{n}$, then $y \in \gamma(x)$, for unique elements $x \in H^{n}$ and $P, Q \in P_{0}(H)^{n}$. Now, since γ is bounded from below, we get $m^{-1}\|y\| \geq\left\|\gamma^{-1} y\right\|$ i.e., $\left\|\gamma^{-1} y\right\| \leq m^{-1}\|y\|$ and since P, Q are arbitrary in $P_{0}(H)^{n}$ and y is arbitrary in $H_{11} \cap H_{1}^{\perp}$, we get $\left\|\gamma^{-1} y\right\| \leq \frac{1}{m}\|y\| \forall y \in H_{11} \cap H_{1}^{\perp}$. Thus γ^{-1} is bounded. Alsoll $\gamma^{-1} \| \leq \frac{1}{m}$.

Conversely, suppose that γ has a bounded inverse on $P_{0}(H)^{n}$. Since $H^{n} \neq 0$, we have $\left\|^{\gamma^{-1}}\right\|^{\neq} 0$ and therefore $\left\|\gamma^{-1}\right\|>0$. Since $\gamma: P_{0}(H)^{n} \rightarrow B(H)^{n}$ is bijective, each $y \in H_{11} \cap H_{1}^{\perp}$ is $\gamma(x)$ for a unique $x \in H^{n}$. So, the relation $\left\|\gamma^{-1}\right\| \leq\left\|\gamma^{-1}\right\|\|y\| \forall y \in H_{11} \cap H_{1}^{\perp} \quad$ can \quad be written as $\left.\| \gamma^{-1} \gamma(x)\right)\|\geq\| \gamma^{-1}\| \| x \| \forall y \in H_{11} \cap H_{1}^{\perp}$.

Which shows that $\delta_{P, Q}(X)$ is bounded from below.
Corollary 3.1.8: Given $P, Q \in P_{0}(H)$ then $\delta_{P, Q}$ is continuous.
Proof: First we assume that $P \perp Q$. For an arbitrary $x \in H^{n},\|x\|=1$, then $x=P x+Q x$ and $\|x\|^{2}=\|P x\|^{2}+\|Q x\|^{2} \geq\|P x\|^{2}$ and $\|x\|^{2}=\|P x\|^{2}+\|Q x\|^{2} \geq\|Q x\|^{2}$. Thus both $P x$ and $Q x$ are bounded by 1 and so is $P X_{\text {and }} Q X$. Suppose that $\delta_{P, Q}$ is continuous at ${ }^{0}$, then we can get some $\lambda>0$ such that for all $y \in H$ with $\|y\|<\lambda$ then $\|y y\|<1$. Now for $x \in H$ and $x \neq 0$ then $\lambda\left(\frac{x}{2\|x\|}\right)=\frac{\lambda}{2}$, so $\left\|\gamma\left(\lambda \frac{x}{\|x\|}\right)\right\|<1$. By the linearity of PX -XQ and homogeneity of the norm, we get $1 \geq\left\|\gamma\left(\lambda \frac{x}{\|x\|}\right)\right\|=\left\|\lambda \frac{y}{2\|x\|}\right\|=\frac{\lambda}{2\|x\|}\|\gamma x\|$ and therefore $\|(P X-X Q) x\| \leq M\|x\| \|_{\text {with }} M=\frac{2}{\lambda}$. In the following discussion, we consider the positivity of the operator $\delta_{P, Q}$ on H^{n}.

Lemma 3.1.9: The product of two commuting positive operators $P \in P_{0}\left(H^{n}\right)$ and $X \in B(H)$ on H^{n} is also positive on H^{n}.
Proof: Let $P \neq 0$ and define a sequence of operators $\left\{S_{n=1}^{\infty}\right\}$ by $S_{1}=P\|P\|, S_{n}+1=S_{n}-S_{n}^{2}=S_{n}\left(I-S_{n}\right)$ for polynomials S_{n} in P and hence selfadjoint operators that commute with P for all $n \in N$. So that $P=\|P\| \sum_{n=1}^{\infty} \sum S_{n}^{2}$. For every $x \in H^{n}, \sum_{n=1}^{\infty} \sum\left\|S_{n} x\right\|^{2}<\infty$ so that $\left\|S_{n} x\right\| \rightarrow 0$. Now, $\langle P X x, x\rangle=\|P\| \sum_{n=1}^{\infty}\left\langle X S_{n} x, S_{n} x\right\rangle \geq 0$

Lemma 3.2.0: Let H^{n} be a finite dimensional Hilbert space and $P, Q \in P_{0}\left(H^{n}\right)$ such that $\operatorname{ran} P \subseteq \operatorname{ran} Q$ and $X \in B(H)$ a positive operator on H^{n} that commutes with both P and Q. Then $\|P X-X Q\|^{2} \geq\|P X\|^{2}-\|X Q\|^{2}$ and $\|P X\|^{2} \leq\|X Q\|^{2}$

Proof: We invoke vector majorization thus: Given that $P, Q \in P_{0}(H)$ then $P-Q$ is an orthogonal projection onto $H_{11} \cap H_{1}^{\perp}$ along $\left(H_{11} \cap H_{1}^{\perp}\right)^{\perp}$ and ranP, ranQ $\in H_{11} \cap H_{1}^{\perp}$. Let $p \in \operatorname{ran} P, p=\left\{p_{i}\right\}_{i=1}^{m}$ and $q \in \operatorname{ran} Q, q=\left\{q_{i}\right\}_{i=1}^{n}$. For suitable bases, we can obtain the matrices for P, Q and $X \in B(H)$ such that the Hilbert-Schmidt norm applies as follows; $\|P\|_{2}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|p_{i j}\right|^{2}\right)^{\frac{1}{2}},\|Q\|_{2}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|q_{i j}\right|^{2}\right)^{\frac{1}{2}}$ and $\|X\|_{2}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|x_{i j}\right|^{2}\right)^{\frac{1}{2}}$. Then $\sum_{i}^{k} q[i] \leq \sum_{i}^{k} p[i]$ and for an arbitrary $\sum_{i}^{k} x[i]$.

$$
\begin{aligned}
& \|P X-X Q\|_{2}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|p_{i j} x_{i j}-x_{i j} q_{i j}\right|^{2}\right)^{\frac{1}{2}} \\
& \quad \geq\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|p_{i j} x_{i j}\right|^{2}\right)^{\frac{1}{2}}-\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|q_{i j} x_{i j}\right|^{2}\right)^{\frac{1}{2}} \\
& \quad=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|p_{i j} x_{i j}\right|^{2}\right)^{\frac{1}{2}}-\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|x_{i j} q_{i j}\right|^{2}\right)^{\frac{1}{2}} \\
& \quad=\|P X\|_{2}-\|X Q\|_{2} \leq 0
\end{aligned}
$$

Theorem 3.2.1: Let $P, Q \in P_{0}(H)$ such that $P \geq Q$ and an arbitrary positive operator $X \in B(H)$. Then $\delta_{P, Q}(X)=P X-X Q$ is positive.

Proof: It suffices to show that $\delta_{P, Q}(X)$ has square roots. If $P=Q$ then $\delta_{P, Q}(X)=0$ then $\delta_{P, Q}(X) \geq 0$, non-negative. Suppose that $P-Q \neq 0$ then $0 \leq(P-Q) \leq I \Rightarrow 0 \leq(P X-X Q) \leq I$ for an arbitrary positive operator $X \in B(H)$.
Now $\|(P X-X Q)\|-(P X-X Q)$ must then satisfy the condition that $0 \leq\|(P X-X Q)\|-(P X-X Q) \leq I$ and so we can find an operator \check{A} such that $\overline{A^{2}}=\|(P X-X Q)\|^{-}(P X-X Q)$
Then $S=(\sqrt{\| I}(P X-X Q) \|) \tilde{A}$ satisfies $S^{2}=(P X-X Q)$. We then set $Z=I-(P X-X Q)$ and $V=I-S$. The operator $V_{\text {should }}$ have the property $(I-V)^{2}=I-Z$, that is implicitly expressed as

$$
\begin{equation*}
V=\frac{1}{2}\left(Z+V^{2}\right) \tag{4.2.1}
\end{equation*}
$$

Now $0 \leq Z \leq I$, and V chosen is such that $0 \leq V \leq I$.
Conversely, if $0 \leq V \leq I$ and satisfy equation (4.2.1) above, then $S=I-V$ is a positive square root of T. We apply method of successive approximations to solve (4.2.1). We set $V_{0}=I$ and define V_{n} recursively by

$$
\begin{equation*}
V_{n+1}=\frac{1}{2}\left(Z+V_{n}^{2}\right), \quad n=0,1,2 \tag{4.2.2}
\end{equation*}
$$

We show that V_{n} converges strongly to a solution of equation (4.2.1).

$$
\begin{equation*}
\text { Let } 0 \leq V_{n} \leq I \tag{4.2.3}
\end{equation*}
$$

This is obviously true for a positive integer n .

$$
\begin{equation*}
\left\langle V_{n+1} x, x\right\rangle=\frac{1}{2}\langle Z x, x\rangle+\frac{1}{2}\left\|V_{n} x\right\|^{2} \quad \forall x \in H^{n} \tag{4.2.4}
\end{equation*}
$$

which implies that $V_{n+1} \geq 0$

$$
\begin{aligned}
& \text { Now } V_{0}<1 \\
& \text { Suppose that } V_{n} \leq I,
\end{aligned}
$$

then equation (4.2.4) gives

$$
\left.\left\langle V_{n+1} x, x\right\rangle \leq \frac{1}{2}\langle I x, x\rangle+\frac{1}{2}\|x\|^{2}=\langle I x, x\rangle \quad \text { (since } Z \leq I\right) \text { and } V_{n} \leq I . \text { Thus } V_{n+1} \leq I .
$$

Consequently, $\left\|V_{n}\right\| \leq I \forall n \in \mathbb{N}$. Now we show that $V_{n} \leq V_{n+1} \forall n \in \mathbb{N}, V \backslash\{0\}_{\text {i.e., }} V_{n+1}-V_{n} \geq 0$. Next, we observe that V_{n} is a polynomial in Z with non-negative coefficients. Now this is true for $n=0$ (for $V_{1}-V_{0}=\frac{1}{2}(Z-I)$. We observe that

$$
\begin{equation*}
V_{n+1}-V_{n}=\frac{1}{2}\left(Z+V_{n}^{2}\right)-\frac{1}{2}\left(Z-V_{n-1}^{2}\right) \tag{4.2.5}
\end{equation*}
$$

(It is noted that V_{n-1} and V_{n} are both polynomials in Z and so $V_{n} \leftrightarrow V_{n-1}$). Suppose that $V_{n}-V_{n-1}$ is a polynomial in $Z_{\text {with }}$ non-negative coefficients, then equation (4.2.5) shows that $V_{n+1}-V_{n}$ is also a polynomial in Z with non-negative coefficients for each non-negative ${ }^{n}$. Next, we show that

$$
\begin{equation*}
Z^{k} \geq 0 \tag{4.2.6}
\end{equation*}
$$

For $k=0,1,2, \ldots$ If $k=2 j$, then $\left\langle Z^{k} x, x\right\rangle=\left\|Z^{j} x\right\|^{2} \geq 0, \forall x \in H^{n}$. Using equation (4.2.6) and the fact that each $V_{n+1}-V_{n}$ is a polynomial in Z with non-negative coefficients, we see that $V_{n+1}-V_{n} \geq 0^{0}$ for all the non-negative integer n .

The sequence $\left(V_{n}\right)$ satisfies,

$$
\begin{equation*}
0 \leq V_{n} \leq V_{n+1} \leq I, \mathrm{n}=0,1,2 \tag{4.2.7}
\end{equation*}
$$

and so, there is a self-adjoint operator $V \in B(H)$ such that

$$
\begin{equation*}
V_{n} \leftrightarrow V, V_{n} \leq V \leq I, \mathrm{n}=0,1,2 \tag{4.2.8}
\end{equation*}
$$

By equation (4.2.8), we see that the operator V is a solution of equation (4.2.4). Letting $n \rightarrow \infty$ we have from equation (4.2.2)

$$
\begin{aligned}
& V=S-\lim V_{n+1} \\
& =S-\lim \frac{1}{2}\left(Z+V_{n}^{2}\right) \\
& =\frac{1}{2}\left(Z+V_{n}\right)
\end{aligned}
$$

then $S=I-V$ is a square root of $(P X-X Q)$.

4. Conclusion

We have shown that $P X-X Q$ is bounded, continuous everywhere and positive i.e., $\|P X-X Q\| \geq 0$ for positive operators P, Q and an arbitrary operator X. For objective two, we have approximated the norm of $\delta_{P, Q}$ by the formula $\left\|\delta_{P, Q}\right\|=\left\{\Sigma|\alpha|^{2}\right\}^{\frac{1}{2}}-\left\{\Sigma|\beta|^{2}\right\}^{\frac{1}{2}}$ and that this norm is bounded.

5. References

1. Anderson JH, Foias C. Properties which normal operators share with normal derivation and related operators. Pacific J. Math. 1976; 61:313-325.
2. Cabello JC, Peralta AM. Weak-2-local symmetric maps on C^{*}-algebras. Linear Algebra Appl. 2016; 494:32-43.
3. Jorda E, Peralta AM. Stability of derivations under weak 2-local continuous pertubations. Aequationes Mathematicae, 2016.
4. Curto RE. The Spectra of elementary operators. Indiana University Mathematics Journal, Indiana, 1983.
5. Johnson BE. Continuity of centralizers on Banach algebras. Amer. J. Math. 1969; 91:1-10.
6. Kadison RV, Lance EC, Ringrose JR. Derivations and Automorphisms of operator algebras II, J. of Functional Analysis. 1947; 1:204-221.
7. Kadison RV. Local derivations, J. d'lgebra. 1990; 130:494-509.
8. Kaplansky IM. Modules over operators algebras. Amer. J. Math. 1953; 75:839-858.
9. Matej B. Characterizations of Derivations on Some Normed Algebras with Involution. Journal of Algebra. 1992; 152:454462.
10. Niazi M, Peralta AM. Weak-2-local derivations on $\mathbb{M} n$, Jstor. 2017; 31(6):1687-1708.
11. Ptak V. Derivations, commutators and radicals. Manuscripta. Math. 1978; 23:355-362.
12. Ringrose JR. Automatic continuity of derivations of operator algebras J. London Math. Soc. 1972; 5(2):432.
13. Salah M. Generalized derivations and C^{*}-algebras An. St. Univ. Ovidius Constanta. 2009; 17(2):123-130.
14. Salah M. Some recent results on operator commutators and related operators with applications.
15. Sakai, Shoichiro. On conjecture of Kaplansky Tohoku Math J. 1960; 12(2):31-33.
16. Semrl P. Local automorphisms and derivations on $B(H)$. Proc. Amer. Math Soc. 1997; 125:2677-2680.
17. Sinclair AM. Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 1968; 90:1067-1073.
18. Sommerset DWB. The proximinality of the centre of a C^{*}-algebra, J. Approx. Theory. 1997; 89:114, 117.
19. Yanai H, Takeuchi K, Takane Y. Projection matrices, generalized inverse matrices and singular value decomposition, Springer, New York, 2011.
