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Abstract 

Transmission control protocol (TCP) or Internet Protocol 

(IP) has undergone several transformations. There are many 

proposals that have been put forward to change the 

mechanisms of TCP congestion control to improve its 

performance. Much work has been done on congestion 

avoidance/control, mostly, previous studies on window-

based congestion control were based on the starting 

network, adaptive congestion, end to end mechanism, 

however, network overloading should be prevented and 

packet losses should also be minimized. The aim of this 

research is to introduce a Proactive Explicit Rate Control 

(PERC) algorithm for max-min fair rates that will take care 

of network overloading and packet losses by sharing. We 

introduced a PERC algorithm for max-min fair rates that can 

give priority to short flows as needed. 
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Introduction 

Window-Based Congestion Control is an internet work horse, in which, up to 90% of the traffics are managed by the 

Transmission Control Protocol (TCP) which are used for web browsing, file sharing, e-mail transmission and other 

applications. The Congestion control algorithms allows different applications to share network bandwidth efficiently without 

oversubscribing or overloading the links. Congestion happens when a network link is overloaded by multiple applications, the 

buffers fill up, packets will be dropped and retransmitted, and applications see a spike in latency or a drop in goodput. User-

facing applications such as search and interactive web services care about latency, while back-end applications like e-mail or 

gmail backups care about goodput. There are many different ways of sharing the network bandwidth to further adapt to the 

application mix; these correspond to different objectives for congestion control algorithms for max-min fairness, shortest-flow-

first, etc. Congestion control is very important when the network is heavily loaded, that is, when bandwidth demands are high 

and there are always multiple applications that may want to make use of the same links simultaneously. This is very important 

when the network speed or round-trip delay is high and buffers fill up quickly even before there is time to react. Consider two 

flows with 200µs Real Time Technology Solution (RTTs) that share a single 200Gb/s bottleneck link with 225KB of 

buffering. It only takes 20µs of line rate traffic to fill the buffers, whereas the servers can adjust their rates only at 200µs time-

scale, which is how long it can take to measure and react to congestion. When the reaction time is long, relative to the buffer 

size, it may not be easy to control congestion reactively. As the RTTs get longer or the link capacity gets higher, as in a WAN, 

without a corresponding increase in the buffer size, this problem only gets worse [1].  

 

Statement of the problem 

The Congestion control optimizes the performance in a communication network. This optimization means, roughly, that 

sending rates at the data sources should be as high as possible, without overloading the network. The primary measure of 

network overload is packet losses; when the arrival rate at a link exceeds capacity, the corresponding queue starts to build up, 

and when the queue is full, packets must be discarded. The bottleneck links in the network should be fully utilized.  

 

Aim and objectives 

The aim of this research is to introduce a Proactive Explicit Rate Control (PERC) algorithm for max-min fair rates that will
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take care of network overloading and packet losses.  

 

The aim is to be achieved by the following objectives. 

1. To design a new model/algorithm that will take care of 

Network Overloading.  

2. Previous Authors used TCP (Transmission Control 

Protocol), DCTCP (Data Center Transmission Control 

Protocol) and RCP (Remote Copy Command), but this 

thesis will use PERC (Proactive Explicit Rate Control) 

for data center networks to apply the algorithm for 

Tracking Packet Losses. 

3. To verify the performance improvements of our 

proposals (Simulation). 

 

Scope of the study 

▪ In this research, we introduced a PERC algorithm for 

max-min fair rates that can give priority to short flows 

as needed. To the best of our knowledge, s-PERC 

(“stateless Proactive Explicit Rate Control”) is the first 

practical PERC algorithm that converges to exact max-

min rates in a known bounded time. This algorithm 

does not require switches to be synchronized or to 

maintain per-flow state, and it can be proved to 

converge in at most 6N RTTs, where N is the length of 

the longest dependency chain. 

▪ To the best of our knowledge, s-PERC (“stateless 

Proactive Explicit Rate Control”) algorithm is the first 

practical algorithm that converges to exact max-min 

rates in a known bounded time.  

▪ This algorithm does not require switches to be 

synchronized or to maintain per-flow state.  

 

Significance of the study  

Contributions of this work, we introduce new delay-based 

techniques in order to improve an existing loss-based, end-

to-end, congestion control algorithm.  

We believe that these techniques will bring significant 

performance advantages into numerous network scenarios. 

We believe that such techniques can bring significant 

performance advantages in numerous network scenarios. We 

run simulations with the Network Simulator 2 (NS-2) tool to 

verify the performance improvements of our proposals. The 

simulation results focus on key performance metrics such as 

link efficiency, fairness, router queue occupancy, latency, 

and packet loss rate. Finally, we compare our proposals with 

several other high-speed congestion control algorithms. A 

TCP end-to-end congestion control algorithm is the simplest 

and most scalable form of congestion control in the Internet. 

Except for the sender, and possibly the receiver, the end-to-

end congestion control approach treats all components of the 

Internet architecture as black-boxes. Congestion is inferred 

only through two implicit signals: packet losses and delay 

variations.  

 

Materials and methods 

We introduced a PERC algorithm for Packet Losses and 

Network Overloading in order to achieve the aim and 

objectives of this research. We stimulated s-PERC’s 

technique of propagating bottleneck rates only when they 

are high enough. We also presented simulation results that 

indicate that n-PERC can take an indiscriminately long time 

to converge in the worst case. 

 

PERC algorithm without Per-Flow State  

The n-PERC algorithm that was designed eliminates per-

flow state at the links. Each link (l} has an estimate of the 

set of flows bottlenecked at the link and, and this was called 

B^(l) and Ȇ(l) to distinguish them from the true sets. 

Whether a flow is in B^(l) or Ȇ(l) is carried in the control 

packet of the flow, for each link l, the link does not need to 

store per-flow state. Recall that in the Fair algorithm the 

link uses per-flow state to store the limit rate of every flow, 

that is, the rate that the flow is limited to by the rest of the 

network.   

In the n-PERC algorithm, the link stores two summative 

values only, called SumE and NumB. SumE is the sum of the 

allocations of flows in Ȇ(l), where each flow is allocated 

exactly its limit rate, and NumB is the number of flows in 

B^(l), which are all limited at l. While these values of SumE 

and NumB may not yield the correct local max-min fair rate, 

they do yield some rate R using Equation below, replacing 

the actual values of SumE and NumB with SumE and 

NumB:  

 

 
 

This rate R in turn can be used to reclassify a flow into B^ 

and Ȇ based on its latest limit rate. The question to ask is 

whether the rates converge over time to the ideal max-min 

rates. 

 

Results and discussion 

Algorithm 5 (Network Overloading) Timeout action at 

link l for s-PERC, every round starting from time T0(l) 

 
1: SumE = 0: sum of allocations of flows bottlenecked elsewhere, that is, in Ȇ 

2: NumB = 0: number of flows bottlenecked here, that is, in B^ 
►Initial state at link l  

3: MaxE = 0: maximum allocation of flows moved to Ȇ since last round  

4: MaxE1 = 0: maximum allocation of flows moved to Ȇ in this round  

5: if s[l] = E then  ►Flow was last bottlenecked elsewhere 

6: SumE          SumE-a[f] 

7: NumB            NumB + 1 

► Update link state to assume flow is going to be 

bottlenecked  
8:     

9: e         minm2Pf nl; i[m]=0g b[m] (or 1 if there is no other link in Pf with 

ignore bit unset)  
►Find flow’s new limit rate 

10: a         min (b; e).  ►Find flow’s new allocation 

11: if b <= e then s       B.  ►Flow is now bottlenecked here, classify as B 

12: else s         E.  ►Flow is now bottlenecked elsewhere, classify as Ȇ 

13: b[l]        b; a[l]         a; s[l]        s  ►Update control packet 

14: if b < MaxE then i[l]         1 ►Bottleneck rate is low; do not propagate it 

15: else i[l]        0.  ►Bottleneck rate is high enough; propagate it 
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16: if flow is leaving then.  ►Update link state to remove flow 

17: NumB          NumB – 1  

18: else if s = E then.  ►Update link state to reflect flow is in Ȇ 

19: NumB           NumB – 1  

20: SumE          SumE + a  

21: MaxE          max (MaxE; a)  

22: MaxE1           max (MaxE1, a)  

 

Algorithm for Control Packet Processing at link l for s-

PERC 

 

 
 

Network Overloading 

Algorithm 7 The WFk algorithm to compute max-min rates. 

For any link l that is removed in iteration n, we allocate A[f] 

= R[l] = C[l]=N[l] as computed in iteration n to each of its 

flows in Ql during iteration n, and remove the flow. 

 

1. L: set of all links in the network that have at least one 

flow.  

2. C: remaining link capacities, N: number of flows 

3. R: remaining link capacity per flow, Q: active flows 

4. A: bandwidth allocation to flow, P: array of links per flow 

5. iteration         0  

6. while L is not empty do 

7. iteration           iteration + 1 

8. for all l 2 L do R[l]        C[l]=N[l] 

9. links_to_remove         fg; flows_to_remove fg 

10.  for all l Є L do 

11.   if WFk == WF∞ then minRate =        minx∞L R[x] 

12.      else minRate = mini=1 minx∞ Xi(l)[R[x] 

13.      if R[l] == minRate then 

14.   add l to links_to_remove 

15.   for all f Є Q[l] do 

16.              add f to flows to_remove 

17.             A[f] = R[l] 

18. for all f 2 flows_to_remove do 

19. for all l Є P[f] do 

20.   C[l]           C[l] - A[f] 

21.              N[l]           N[l] – 1 

22.             remove f from Q[l] 

23.    remove links_to_remove from L 

 

Conclusion 

Most of existing congestion control algorithms are 

essentially reactive control systems, which will figure out 

rates purely by reacting to congestion signals typically at 

RTT time scales, then taking small steps over many 

iterations toward convergence. As networks get faster and 

more data can fit into each RTT, buffers can fill up quickly 

even before there is time to react. Hence, in this research, 

we focused on a different class of algorithms: PERC 

algorithms, which do not rely on congestion signals but 

instead use explicit global information (like the number of 

flows crossing a link) to proactively compute rates for all 

flows. We believe that congestion control should converge 

in a time limited only by fundamental dependency chains, 

which are a property of the traffic matrix and the network 

topology. Prior attempts to proactively calculate the fair 

share rates in the network were not successful, because they 

required per-flow state, and the algorithms were not proved 

to converge.  

With s-PERC, we have introduced a PERC algorithm that is 

practical (it does not require per-flow state, and the 

calculations are also possible at line rate in relatively simple 

hardware) and guaranteed to converge; our results from the 

simulations and a hardware prototype show that s-PERC is 

robust to churn and to also converges several times faster 

than other algorithms. We have evaluated PERC in a data-

center setting to validate that PERC achieves flow 

completion times that are closer to an ideal max-min scheme 

than a reactive algorithm, because of its faster convergence. 

For realistic workloads, PERC competes favorably with 

schemes that favor short flows, such as p-Fabric, yielding 

low latencies for short flows and high throughput for large 

flows. The simulations indicate that fast-converging PERC 

algorithms like s-PERC would be very well suited to long-

haul networks where there is a need for fair bandwidth 

allocation between flows that that is predictable and avoids 

congestion. As we have mentioned in this chapter, there is 

more work to be done, and so we believe that this is only the 

first word about PERC algorithms in high-speed networks, 

not the last. 
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