

318

Int. j. adv. multidisc. res. stud. 2022; 2(2):318-321

International Journal of Advanced Multidisciplinary

Research and Studies

Window-Based Congestion Control

1 Matthew O Ayemowa, 2 AA Waheed, 3 OL Abraham
1 Department of Computer Science, Gateway Polytechnic, Saapade, Ogun State, Nigeria

2 Department of Computer Science, Lead City University, Oyo State, Nigeria
3 ITS Unit, Gateway Polytechnic, Saapade, Ogun State, Nigeria

 Corresponding Author: Matthew O Ayemowa

Abstract

Transmission control protocol (TCP) or Internet Protocol

(IP) has undergone several transformations. There are many

proposals that have been put forward to change the

mechanisms of TCP congestion control to improve its

performance. Much work has been done on congestion

avoidance/control, mostly, previous studies on window-

based congestion control were based on the starting

network, adaptive congestion, end to end mechanism,

however, network overloading should be prevented and

packet losses should also be minimized. The aim of this

research is to introduce a Proactive Explicit Rate Control

(PERC) algorithm for max-min fair rates that will take care

of network overloading and packet losses by sharing. We

introduced a PERC algorithm for max-min fair rates that can

give priority to short flows as needed.

Keywords: Congestion Window, Network Overloading, Network Protocols, Packet Losses, Congestion Control

Introduction

Window-Based Congestion Control is an internet work horse, in which, up to 90% of the traffics are managed by the

Transmission Control Protocol (TCP) which are used for web browsing, file sharing, e-mail transmission and other

applications. The Congestion control algorithms allows different applications to share network bandwidth efficiently without

oversubscribing or overloading the links. Congestion happens when a network link is overloaded by multiple applications, the

buffers fill up, packets will be dropped and retransmitted, and applications see a spike in latency or a drop in goodput. User-

facing applications such as search and interactive web services care about latency, while back-end applications like e-mail or

gmail backups care about goodput. There are many different ways of sharing the network bandwidth to further adapt to the

application mix; these correspond to different objectives for congestion control algorithms for max-min fairness, shortest-flow-

first, etc. Congestion control is very important when the network is heavily loaded, that is, when bandwidth demands are high

and there are always multiple applications that may want to make use of the same links simultaneously. This is very important

when the network speed or round-trip delay is high and buffers fill up quickly even before there is time to react. Consider two

flows with 200µs Real Time Technology Solution (RTTs) that share a single 200Gb/s bottleneck link with 225KB of

buffering. It only takes 20µs of line rate traffic to fill the buffers, whereas the servers can adjust their rates only at 200µs time-

scale, which is how long it can take to measure and react to congestion. When the reaction time is long, relative to the buffer

size, it may not be easy to control congestion reactively. As the RTTs get longer or the link capacity gets higher, as in a WAN,

without a corresponding increase in the buffer size, this problem only gets worse [1].

Statement of the problem

The Congestion control optimizes the performance in a communication network. This optimization means, roughly, that

sending rates at the data sources should be as high as possible, without overloading the network. The primary measure of

network overload is packet losses; when the arrival rate at a link exceeds capacity, the corresponding queue starts to build up,

and when the queue is full, packets must be discarded. The bottleneck links in the network should be fully utilized.

Aim and objectives

The aim of this research is to introduce a Proactive Explicit Rate Control (PERC) algorithm for max-min fair rates that will

Received: 14-02-2022

Accepted: 24-03-2022

ISSN: 2583-049X

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

319

take care of network overloading and packet losses.

The aim is to be achieved by the following objectives.

1. To design a new model/algorithm that will take care of

Network Overloading.

2. Previous Authors used TCP (Transmission Control

Protocol), DCTCP (Data Center Transmission Control

Protocol) and RCP (Remote Copy Command), but this

thesis will use PERC (Proactive Explicit Rate Control)

for data center networks to apply the algorithm for

Tracking Packet Losses.

3. To verify the performance improvements of our

proposals (Simulation).

Scope of the study

▪ In this research, we introduced a PERC algorithm for

max-min fair rates that can give priority to short flows

as needed. To the best of our knowledge, s-PERC

(“stateless Proactive Explicit Rate Control”) is the first

practical PERC algorithm that converges to exact max-

min rates in a known bounded time. This algorithm

does not require switches to be synchronized or to

maintain per-flow state, and it can be proved to

converge in at most 6N RTTs, where N is the length of

the longest dependency chain.

▪ To the best of our knowledge, s-PERC (“stateless

Proactive Explicit Rate Control”) algorithm is the first

practical algorithm that converges to exact max-min

rates in a known bounded time.

▪ This algorithm does not require switches to be

synchronized or to maintain per-flow state.

Significance of the study

Contributions of this work, we introduce new delay-based

techniques in order to improve an existing loss-based, end-

to-end, congestion control algorithm.

We believe that these techniques will bring significant

performance advantages into numerous network scenarios.

We believe that such techniques can bring significant

performance advantages in numerous network scenarios. We

run simulations with the Network Simulator 2 (NS-2) tool to

verify the performance improvements of our proposals. The

simulation results focus on key performance metrics such as

link efficiency, fairness, router queue occupancy, latency,

and packet loss rate. Finally, we compare our proposals with

several other high-speed congestion control algorithms. A

TCP end-to-end congestion control algorithm is the simplest

and most scalable form of congestion control in the Internet.

Except for the sender, and possibly the receiver, the end-to-

end congestion control approach treats all components of the

Internet architecture as black-boxes. Congestion is inferred

only through two implicit signals: packet losses and delay

variations.

Materials and methods

We introduced a PERC algorithm for Packet Losses and

Network Overloading in order to achieve the aim and

objectives of this research. We stimulated s-PERC’s

technique of propagating bottleneck rates only when they

are high enough. We also presented simulation results that

indicate that n-PERC can take an indiscriminately long time

to converge in the worst case.

PERC algorithm without Per-Flow State

The n-PERC algorithm that was designed eliminates per-

flow state at the links. Each link (l} has an estimate of the

set of flows bottlenecked at the link and, and this was called

B^(l) and Ȇ(l) to distinguish them from the true sets.

Whether a flow is in B^(l) or Ȇ(l) is carried in the control

packet of the flow, for each link l, the link does not need to

store per-flow state. Recall that in the Fair algorithm the

link uses per-flow state to store the limit rate of every flow,

that is, the rate that the flow is limited to by the rest of the

network.

In the n-PERC algorithm, the link stores two summative

values only, called SumE and NumB. SumE is the sum of the

allocations of flows in Ȇ(l), where each flow is allocated

exactly its limit rate, and NumB is the number of flows in

B^(l), which are all limited at l. While these values of SumE

and NumB may not yield the correct local max-min fair rate,

they do yield some rate R using Equation below, replacing

the actual values of SumE and NumB with SumE and

NumB:

This rate R in turn can be used to reclassify a flow into B^

and Ȇ based on its latest limit rate. The question to ask is

whether the rates converge over time to the ideal max-min

rates.

Results and discussion

Algorithm 5 (Network Overloading) Timeout action at

link l for s-PERC, every round starting from time T0(l)

1: SumE = 0: sum of allocations of flows bottlenecked elsewhere, that is, in Ȇ

2: NumB = 0: number of flows bottlenecked here, that is, in B^
►Initial state at link l

3: MaxE = 0: maximum allocation of flows moved to Ȇ since last round

4: MaxE1 = 0: maximum allocation of flows moved to Ȇ in this round

5: if s[l] = E then ►Flow was last bottlenecked elsewhere

6: SumE SumE-a[f]

7: NumB NumB + 1

► Update link state to assume flow is going to be

bottlenecked
8:

9: e minm2Pf nl; i[m]=0g b[m] (or 1 if there is no other link in Pf with

ignore bit unset)
►Find flow’s new limit rate

10: a min (b; e). ►Find flow’s new allocation

11: if b <= e then s B. ►Flow is now bottlenecked here, classify as B

12: else s E. ►Flow is now bottlenecked elsewhere, classify as Ȇ

13: b[l] b; a[l] a; s[l] s ►Update control packet

14: if b < MaxE then i[l] 1 ►Bottleneck rate is low; do not propagate it

15: else i[l] 0. ►Bottleneck rate is high enough; propagate it

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

320

16: if flow is leaving then. ►Update link state to remove flow

17: NumB NumB – 1

18: else if s = E then. ►Update link state to reflect flow is in Ȇ

19: NumB NumB – 1

20: SumE SumE + a

21: MaxE max (MaxE; a)

22: MaxE1 max (MaxE1, a)

Algorithm for Control Packet Processing at link l for s-

PERC

Network Overloading

Algorithm 7 The WFk algorithm to compute max-min rates.

For any link l that is removed in iteration n, we allocate A[f]

= R[l] = C[l]=N[l] as computed in iteration n to each of its

flows in Ql during iteration n, and remove the flow.

1. L: set of all links in the network that have at least one

flow.

2. C: remaining link capacities, N: number of flows

3. R: remaining link capacity per flow, Q: active flows

4. A: bandwidth allocation to flow, P: array of links per flow

5. iteration 0

6. while L is not empty do

7. iteration iteration + 1

8. for all l 2 L do R[l] C[l]=N[l]

9. links_to_remove fg; flows_to_remove fg

10. for all l Є L do

11. if WFk == WF∞ then minRate = minx∞L R[x]

12. else minRate = mini=1 minx∞ Xi(l)[R[x]

13. if R[l] == minRate then

14. add l to links_to_remove

15. for all f Є Q[l] do

16. add f to flows to_remove

17. A[f] = R[l]

18. for all f 2 flows_to_remove do

19. for all l Є P[f] do

20. C[l] C[l] - A[f]

21. N[l] N[l] – 1

22. remove f from Q[l]

23. remove links_to_remove from L

Conclusion

Most of existing congestion control algorithms are

essentially reactive control systems, which will figure out

rates purely by reacting to congestion signals typically at

RTT time scales, then taking small steps over many

iterations toward convergence. As networks get faster and

more data can fit into each RTT, buffers can fill up quickly

even before there is time to react. Hence, in this research,

we focused on a different class of algorithms: PERC

algorithms, which do not rely on congestion signals but

instead use explicit global information (like the number of

flows crossing a link) to proactively compute rates for all

flows. We believe that congestion control should converge

in a time limited only by fundamental dependency chains,

which are a property of the traffic matrix and the network

topology. Prior attempts to proactively calculate the fair

share rates in the network were not successful, because they

required per-flow state, and the algorithms were not proved

to converge.

With s-PERC, we have introduced a PERC algorithm that is

practical (it does not require per-flow state, and the

calculations are also possible at line rate in relatively simple

hardware) and guaranteed to converge; our results from the

simulations and a hardware prototype show that s-PERC is

robust to churn and to also converges several times faster

than other algorithms. We have evaluated PERC in a data-

center setting to validate that PERC achieves flow

completion times that are closer to an ideal max-min scheme

than a reactive algorithm, because of its faster convergence.

For realistic workloads, PERC competes favorably with

schemes that favor short flows, such as p-Fabric, yielding

low latencies for short flows and high throughput for large

flows. The simulations indicate that fast-converging PERC

algorithms like s-PERC would be very well suited to long-

haul networks where there is a need for fair bandwidth

allocation between flows that that is predictable and avoids

congestion. As we have mentioned in this chapter, there is

more work to be done, and so we believe that this is only the

first word about PERC algorithms in high-speed networks,

not the last.

References

1. Niels Moller. Window-Based Congestion Control a

Dissertation Submitted to Stockholm, Sweden, 2018.

ISBN-978-91-7178-831-3.

2. Rhee, L Xu. CUBIC: A new TCP-friendly high-speed

TCP variant. In International Workshop on Protocols

for Fast Long-Distance Networks, Lyon, February

2015.

3. M¨oller N, Johansson KH, Hjalmarsson H. Making

retransmission delays in wireless links friendlier to

TCP. In IEEE Conference on Decision and Control.

IEEE, 2014.

4. Niels Moller. Window-Based Congestion Control a

Dissertation Submitted to Stockholm, Sweden, 2018.

ISBN-978-91-7178-831-3.

5. Kanagarathinam MR, Singh S, Sandeep I, Kim H,

http://www.multiresearchjournal.com/

International Journal of Advanced Multidisciplinary Research and Studies www.multiresearchjournal.com

321

Maheshwari MK, Hwang J, et al. NexGen D-TCP: Next

Generation Dynamic TCP Congestion Control

Algorithm. IEEE Access. 2020; 8:164482-164496.

6. Patil J, Tokekar V, Rajan A, Rawat A. SMDMTS–

Scalable Model to Detect and Mitigate Slow/Fast TCP-

SYN Flood Attack in Software Defined Network. In

2020 International Conference on Computational

Performance Evaluation (ComPE). IEEE, 2020, 290-

295.

7. Guan S, Jiang Y, Guan Q. Improvement of TCP Vegas

algorithm based on forward direction delay.

International Journal of Web Engineering and

Technology. 2020; 15(1):81-95.

8. Ahmad M, Ahmad U, Ngadi MA, Habib MA, Khalid S,

Ashraf R. Loss Based Congestion Control Module for

Health Centers Deployed by Using Advanced IoT

Based SDN Communication Networks. International

Journal of Parallel Programming. 2020; 48(2):213-243.

9. Zhu J, Jiang X, Jin G, Li P. CaaS: Enabling Congestion

Control as a Service to Optimize WAN Data Transfer.

In International Conference on Security and Privacy in

Digital Economy. Springer, Singapore, 2020, 79-90.

10. Li Y, Cao G, Wang T, Cui Q, Wang B. A novel local

region-based active contour model for image

segmentation using Bayes theorem. Information

Sciences. 2020; 506:443-456.

http://www.multiresearchjournal.com/

