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Abstract 

We study a one-dimensional heat equation by Lie group 

analysis method. The constructed Lie point symmetries have 

been employed in reduction of the partial differential 

equation into simple ordinary differential equations and 

exact solutions obtained. A Soliton has been produced by 

use of a linear combination of time and space translation 

symmetries. We also compute conservation laws using 

multiplier approach. 
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1. Introduction 

The one-dimensional heat equation [5], 

 

 ∆ ≡ ut − huxx = 0, (1.1) 

 

where t and x represent time and spatial independent variables in the dependent variable u, has been a subject of study for 

nearly 200 years. The constant h is the diffusivity of the medium upon which heat travels. Equation (1.1) is a very interesting 

model of diffusion in a continuous medium and boasts of a very wide applicability and a considerable volume of rich 

mathematical theories have emanated from its study. It is important to mention that Equation (1.1) is intimately related to 

Burger’s Equation [18]. 

 

2. Preliminaries 

This section presents a prelude that is used in what comes after. 

 

Local Lie groups. [6] 

We will consider the transformations 

 

 , (2.1) 

 

in the Euclidean space Rn of x = xi independent variables and Rm of u = uα dependent variables. The continuous parameter  

ranges from a neighbourhood  for ϕ i and ψ α differentiable and analytic in the parameter . 

 

Definition 2.1 Let G be a set of transformations in (2.1). Then G is a local Lie group if: 

1) Given T 1, T 2 ∈ G, for 1, 2 ∈ N’ ⊂ N, then  

T 1 T 2 = T 3 ∈ G, 3 = φ ( 1, 2) ∈ N (Closure). 

2) There exists a unique T0 ∈ G if and only if  = 0 such that T T0 = T0T  = T  (Identity). 

3) There exists a unique T −1 ∈ G for every transformation T  ∈ G,  

where  ∈ N’ ⊂ N and  −1 ∈ N such that  

T T −1 = T −1 T  = T0 (Inverse). 
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Remark 2.2 The condition (i) is sufficient for associativity of G. 

Prolongations. Consider the system, 

 

  (2.2) 

 

where uα are dependent variables with partial derivatives u(1) = {u α
i }, u(2) = {uα

ij}, . . . , u(π) = {uα
i1...iπ }, of the first, second, . . 

. , up to the πth-orders. We shall denote by 

 

  (2.3) 

 

the total differentiation operator with respect to the variables xi and δj
i, the Kronecker delta. Then 

 

  (2.4) 

 

where uα
i defined in (2.4) are differential variables [6]. 

 

(1) Prolonged groups Let G given by 

 

  (2.5) 

 

Where  means evaluated on  = 0. 

 

Definition 2.3 The construction of G in (2.5) is equivalent to the computation of infinitesimal transformations 

 

  (2.6) 

 

obtained from (2.1) by a Taylor series expansion of ϕ i (x i, uα, ) and ψ i (x i, uα, ) in  about  = 0 and keeping only the 

terms linear in , where 

 

  (2.7) 

 

Remark 2.4 By using the symbol of infinitesimal transformations, X, (2.6) becomes 

 

  (2.8) 

 

Where 

 

  (2.9) 

 

is the generator G in (2.5). 

 

Remark 2.5 The change of variables formula 

 

  (2.10) 

 

is employed to construct transformed derivatives from (2.1). The  is total differentiation . As a result 

 

  (2.11) 

 

If we apply the change of variable formula given in (2.10) on G given by (2.5), we get 

 

  (2.12) 
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If we expand (2.12), we obtain 

 

  (2.13) 

 

The  can be written as functions of x i, uα, u(1), meaning that, 

  

  (2.14) 

 

Definition 2.6 The transformations in (2.5) and (2.14) give the first prolongation group G [1]. 

 

Definition 2.7 Infinitesimal transformation of the first derivatives is 

 

  (2.15) 

 

Remark 2.8 In terms of infinitesimal transformations, G [1] is given by (2.6) and (2.15). 

 

(2) Prolonged generators 

Definition 2.9 By the relation (2.12) on G [1] from 2.6, we obtain [6] 

 

  (2.16) 

 

 (2.17) 

 

and thus 

 

  (2.18) 

 

is the first prolongation formula. 

 

Remark 2.10 Analogously, one constructs higher order prolongations [6], 

 

  (2.19) 

 

Remark 2.11 The prolonged generators of the prolongations G [1], . . . , G [κ] of the group G are 

 

  (2.20) 

 

for the group generator X in (2.9). 

 

Group invariants. 

 

Definition 2.12 A function Γ(x i, uα) is said to be an invariant of G of in (2.1) if 

 

  (2.21) 

 

Theorem 2.13 A function Γ(x i, uα) is an invariant of the group G given by (2.1) if and only if it solves the following first-order 

linear PDE: [6] 

 

  (2.22) 

 

From Theorem (2.13), we have the following result. 
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Theorem 2.14 The Lie group G in (2.1) [6] has precisely n−1 functionally independent invariants and one can take as the basic 

invariants, the left-hand sides of the first integrals 

 

  (2.23) 

 

of the characteristic equations for (2.22): 

 

  (2.24) 

 

Symmetry groups. 

 

Definition 2.15 We define the vector field X (2.9) as a Lie point symmetry of (2.2) if the determining equations 

 

  (2.25) 

 

are satisfied for the π-th prolongation of X, namely X[π]. 

 

Definition 2.16 The Lie group G is a symmetry group of (2.2) if (2.2) is form-invariant, that is 

 

  (2.26) 

 

Theorem 2.17 The Lie group G (2.1) can be constructed from the infinitesimal transformations in (2.5) by integrating the Lie 

equations 

 

  (2.27) 

 

Lie algebras. 

 

Definition 2.18 A vector space Vr of operators [6] X (2.9) is a Lie algebra if for any Xi, Xj ∈ Vr, 

 

  (2.28) 

 

is in Vr for all i, j = 1, . . . , r. 

 

Remark 2.19 The commutator is bilinear, skew symmetric and admits to the Jacobi identity [6].  

 

Theorem 2.20 The set of solutions of (2.25) forms a Lie algebra [6].  

 

Exact solutions. The methods of (G'/G)-expansion method [21], Extended Jacobi elliptic function expansion [22] and Kudryashov 

[19] are usually applied after symmetry reductions.  

 

Conservation laws. [6] 

Fundamental operators. 

 

Definition 2.21 The Euler-Lagrange operator δ/δuα is 

 

  (2.29) 

 

and the Lie- Bäcklund operator in abbreviated form [6] is 

 

  (2.30) 

 

Remark 2.22 The Lie- Bäcklund operator (2.30) in its prolonged form is 

 

  (2.31) 
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For 

 

  (2.32) 

 

and the Lie characteristic function 

 

  (2.33) 

 

Remark 2.23 The characteristic form of Lie- Bäcklund operator (2.31) is 

 

  (2.34) 

 

The method of multipliers 

Definition 2.24 A function is a multiplier of (2.2) if [21] 

 

  (2.35) 

 

where DiT i is a divergence expression. 

 

Definition 2.25 To find the multipliers Λ α, one solves the determining equations (2.36) [20], 

 

  (2.36) 

 

Ibragimov's conservation theorem . The technique [6] enables one to construct conserved vectors associated with each Lie 

point symmetry of (2.2).  

 

Definition 2.26 The adjoint equations of (2.2) are 

 

  (2.37) 

 

for a new dependent variable v α. 

 

Definition 2.27 The Formal Lagrangian L of (2.2) and its adjoint equations (2.37) is [6] 

 

  (2.38) 

 

Theorem 2.28 Every infinitesimal symmetry X of (2.2) leads to conservation laws [6] 

 

  (2.39) 

 

where the conserved vector 

 

  (2.40) 

 

3. Main results 

3.1. Lie point symmetries of one-dimensional heat equation (1.1). We start first by computing Lie point symmetries of the 

one-dimensional heat Equation (1.1), which admits the one-parameter Lie group of transformations with infinitesimal 

generator 

 

  (3.1) 

if and only if 

 

  (3.2) 
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By using the second prolongation of X, that is, X[2], we obtain 

 

  (3.3) 

 

which gives 

 

  (3.4) 

 

Where 

 

  (3.5) 

 

If we substitute for ζ1 and ζ22 in the determining Equation (3.4), we obtain the following; 

 

  (3.6) 

 

Now replacing uxx by ut/h in the above equation we obtain, 

 

  (3.7) 

 

Or 

 

  (3.8) 

 

Now that the functions τ, ξ and η are only of t, x and u and are independent of the derivatives of u, we can then split Equation 

(3.8) on the derivatives of u and obtain 

 

 ` (3.9) 

 

  (3.10) 

 

  (3.11) 

 

  (3.12) 

 

From Equation (3.9), it is evident that 

 

  (3.13) 

 

  (3.14) 

 

  (3.15) 

 

By making ξx, the subject in Equation (3.10), and integrating with respect to x, we have 

 

  (3.16) 

 

Consequently, 
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and Equation (3.11), 

 

  (3.17) 

 

Equation (3.16) is necessary and sufficient for 

 

  (3.18) 

 

Equation (3.15), also implies that 

 

  (3.19) 

 

Now, by Equation (3.18) and (3.19), we have 

 

  (3.20) 

 

which is integrated with respect to x to give 

 

  (3.21) 

 

If we use the values 

 

  (3.22) 

 

in Equation (3.12), we have 

 

  (3.23) 

 

If we separate Equation (3.23), on powers of u yields; 

 

  (3.24) 

 

  (3.25) 

 

The solution to Equation (3.25) is any arbitrary function B(t, x) that satisfies one dimensional heat equation (1.1). We can 

separate Equation (3.24) in powers of x to obtain 

 

  (3.26) 

 

  (3.27) 

 

  (3.28) 

 

Equations (3.26, 3.27) and (3.28) are solved by 

 

  (3.29) 

 

  (3.30) 

 

  (3.31) 

 

and finally; 

 

  (3.32) 
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  (3.33) 

 

  (3.34) 

 

We have obtained an infinite-dimensional Lie algebra of symmetries spanned by 

 

  (3.35) 

 

  (3.36) 

 

   (3.37) 

 

  (3.38) 

 

  (3.39) 

 

  (3.40) 

 

  (3.41) 

 

Remark 3.1 The one-dimensional heat Equation (1.1) has an infinite-dimensional Lie algebra of point symmetries and many 

higher symmetries. This is evident from the presence of an arbitrary function of the independent variables in the last symmetry. 

 

3.2 Commutator Table for Symmetries. We evaluate the commutation relations for the symmetry generators. By definition 

of Lie bracket [22], for example, we have that 

 

  (3.42) 

 

Remark 3.2 The remaining commutation relations are obtained analogously. We present all commutation relations in table (1) 

below. 

 
Table 1: A commutator table for Lie algebra of one-dimensional heat equation 

 

[Xi,Xj] X1 X2 X3 X4 X5 X6 X∞ 

X1 0 −8hX1 −X2 + 2hX6 0 −2X4 0 X∞1 

X2 8hX1 0 −8hX3 4hX4 −4hX5 0 X∞2 

X3 X2 − 2hX6 8hX3 0 2hX5 0 0 X∞t 

X4 0 −4hX4 −2hX5 0 X6 0 X∞3 

X5 2X4 4hX5 0 −X6 0 0 X∞x 

X6 0 0 0 0 0 0 −X∞ 

X∞ −X∞1 −X∞2 −X∞t −X∞3 −X∞x X∞ 0 

 

Where 

 

  
 

3.3 Group Transformations The corresponding one-parameter group of transformations can be determined by solving the Lie 

equations [23]. Let T i be the group of transformations for each Xi, i = 1, 2, 3, 4, 5, 6, ∞. We display how to obtain T i from Xi 

by finding one-parameter group for the infinitesimal generator X5, namely, 

 

  (3.43) 

 

In particular, we have the Lie equations 
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  (3.44) 

 

Solving the system (3.44) one obtains, 

 

  (3.45) 

 

and hence the one-parameter group T 5 corresponding to the operator X5 is 

 

  (3.46) 

 

All the five one-parameter groups are presented below: 

 

  (3.47) 

 

3.4 Symmetry transformations. We now show how the symmetries we have obtained can be used to transform special exact 

solutions of the one-dimensional heat equation into new solutions. The Lie group analysis vouches for fundamental ways of 

constructing exact solutions of PDEs, that is, group transformations of known solutions and construction of group-invariant 

solutions. We will illustrate these methods with examples. If  is a solution of equation (1.1) 

 

  (3.48) 

 

is also a solution. The one parameter groups dictate to the following generated solutions: 

 

  (3.49) 

 

3.5 Construction of Group-Invariant Solutions. Now we compute the group invariant solutions of one dimensional heat 

equation. 

 

(i)  

The associated Lagrangian equations 

 

  (3.50) 

 

yield two invariants, J1 = x/t from dt/4ht2 = dx/4htx and J2 = ln |u| + 1 2 ln t − x 2/4ht from dt/4ht2 = du/(−u(x2+2ht)). Thus using 

J2 = Φ(J1), we have 

 

  (3.51) 

 

or 

 

  (3.52) 
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The derivatives are given by: 

 

  
 

If we substitute these derivatives into Equation (1.1), we obtain the first order ordinary differential equation 

 

  (3.53) 

 

which can be solved and the required group-invariant solution to Equation (1.1) is given by 

 

  (3.54) 

 

(ii).  

 

  (3.55) 

 

This gives the constants J1 = u and J2 = x 2/t, giving the solution 

 

  (3.56) 

 

We obtain the derivatives as follows: 

 

  (3.57) 

 

  (3.58) 

 

  (3.59) 

 

If we substitute the above derivatives in Equation (1.1), we obtain the second order ordinary differential equation 

 

  (3.61) 

 

Integrate once with respect to ϕ to obtain 

 

  (3.62) 

 

where we have set the constant of integration to zero. We can write Equation (3.62 ) as 

 

  (3.63) 

 

and on integration, we obtain 

 

  (3.64) 

 

Then 

 

  (3.65) 

 

the solution is 
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  (3.66) 

 

(iii)  (Stationary solutions) 

 

The Lagrangian system associated with the operator X3 is 

 

  (3.67) 

 

whose invariants are J1 = x and J2 = u. So, u = ψ(x) is the group-invariant solution. Substituting of u = ψ(x) into (1.1) yields 

 

  (3.68) 

 

Equation (3.68) is a second order linear ODE which is satisfied by the function 

 

  (3.69) 

 

Thus, the stationary solution for (1.1) is given by 

 

  (3.70) 

 

(iv)  

Characteristic equations associated to the operator X4 are 

 

  (3.71) 

 

Yields J1 = t and J2 = x 2/4ht + ln |u|. As a result, the group-invariant solution of (1.1) for this case is J= = φ(J1), for φ an 

arbitrary function. That is 

 

  (3.72) 

 

Now 

 

  (3.73) 

 

Substitution of the value of u from equation (3.72) into equation (1.1) yields a first order ordinary differential equation 

 

  (3.74) 

 

whose general solution is φ(t) = (− ln |t|+C6)/2. Hence, the group-invariant solution under X4 is 

 

  (3.75) 

 

(v) Space translation -invariant solutions  

We consider the space translation operator 

 

  (3.76) 

 

Characteristic equations associated with the operator (3.76) are 

 

   (3.77) 

 

which give two invariants J1 = t and J2 = u. Therefore, u = ψ(t) is the group-invariant solution for some arbitrary function ψ. 

Substitution of u = ψ(t) into (1.1) yields 

 

  (3.78) 
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whose solution is 

 

  (3.79) 

 

for C1 an arbitrary constant. Hence the group-invariant solution of (1.1) under the space translation operator (3.76) is 

 

  (3.80) 

 

(vi)   
 This Lie point symmetry does not have any invariant solution. 

 

(vii)  

 This Lie point symmetry does not have any invariant solution. 

 

3.6 Soliton. We obtain a traveling wave solution for the one-dimensional heat Equation (1.1) by considering a linear 

combination of the symmetries X5 and X3, namely, [21] 

 

  (3.81) 

 

The characteristic equations are 

 

  (3.82) 

 

We get two invariants, J1 = x − ct and J2 = u. So, the group-invariant solution is 

 

  (3.83) 

 

for some arbitrary function Φ and c the velocity of the wave. Substitution of u into (1.1) yields a second order ordinary 

differential equation 

 

  (3.84) 

 

with constant coefficients. If z = x−ct and Φ’(z) = y, then we have a simplified ordinary differential equation of the form 

 

  (3.85) 

 

whose solution is 

 

  (3.86) 

 

Thus 

 

  (3.87) 

 

Clearly, 

 

  (3.88) 

 

which is a solitary wave. 

 

4. Conservation laws of equation (1.1) 

We will employ multipliers in the construction of conservation laws. 

4.1 The multipliers. We make use of the Euler-Lagrange operator defined as defined in [23] to look for a zeroth order multiplier 

Λ = Λ(t, x, u). The resulting determining equation for computing Λ is 

 

  (4.1) 

 

Where 

 

  (4.2) 
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Expansion of Equation (4.1) yields 

 

  (4.3) 

 

Invoking the total derivatives 

 

  (4.4) 

 

  (4.5) 

 

on Equation (4.3) produces 

 

  (4.6) 

 

Splitting Equation (4.6) on derivatives of u produces an overdetermined system of four partial differential equations, namely 

 

  (4.7) 

 

  (4.8) 

 

  (4.9) 

 

  (4.10) 

 

Note that Equation (4.8) is sufficient for Equations (4.9) and (4.7) and implies that 

 

  (4.11) 

 

By substituting Λ(t, x) into Equation ( 4.10), we obtain the linear heat equation 

 

  (4.12) 

 

Equation (4.12) can be solved by separation of variables. If we assume a solution of the form 

 

  (4.13) 

 

then Equation (4.12) gives 

 

  (4.14) 

 

Dividing by X(x)hT(t) = 0 and introducing the separation constant −λ 2, we have 

 

  (4.15) 

 

  (4.16) 

 

The solutions to Equations (4.15) and (4.16) are respectively given by 

 

  (4.17) 

 

  (4.18) 

 

which implies that 

 

  (4.19) 

 

We finally have the solution to Equation (4.12) as 

 

  (4.20) 

Essentially, we extract the two multiplies 

 

  (4.21) 
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  (4.22) 

 

Remark 4.1 Recall that a multiplier Λ for Equation (1.1) has the property that for the density Tt = Tt (t, x, u) and flux T x = T x 

(t, x, u, ux), 

 

  (4.23) 

 

Where 

 

  (4.24) 

 

  (4.25) 

 

We derive a conservation law corresponding to each of the multipliers. 

 

(i) Conservation law for the multiplier  

Expansion of equation (4.23) gives 

 

  (4.26) 

 

Splitting Equation (4.26) on the second derivative of u yields 

 

  (4.27) 

 

  (4.28) 

 

The integration of Equation (4.27) with respect to ux gives 

 

  (4.29) 

 

Substituting the expression of Tx from (4.29) into Equation (4.26) we get 

 

  (4.30) 

 

which splits on first derivatives of u, to give 

 

  (4.31) 

 

  (4.32) 

 

  (4.33) 

 

Integrating equations (4.31) and (4.32) with respect to u manifests that 

 

  (4.34) 

 

  (4.35) 

 

By substituting the obtained functions into Equation (4.30), we have 

 

  (4.36) 

 

Since C(t, x) and B(t, x) contribute to the trivial part of the conservation law, we take C(t, x) = B(t, x) = 0 and obtain the 

conserved quantities 

 

  (4.37) 

 

  (4.38) 

 

from which the conservation law corresponding to the multiplier  is given by 

 

  (4.39) 
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(ii) Conservation law for the multiplier  

Expansion of equation (4.23) gives 

 

  (4.40) 

 

Splitting Equation (4.40) on the second derivative of u yields 

 

  (4.41) 

 

  (4.42) 

 

The integration of Equation (4.41) with respect to ux gives 

 

  (4.43) 

 

Substituting the expression of T x from (4.43) into Equation (4.40) we get 

 

  (4.44) 

 

which splits on first derivatives of u, to give 

 

  (4.45) 

 

  (4.46) 

 

  (4.47) 

 

Integrating equations (4.45) and (4.46) with respect to u manifests that 

 

  (4.48) 

 

  (4.49) 

 

By substituting the obtained functions into Equation (4.44), we have 

 

  (4.50) 

 

We may take c(t, x) and c(t, x) as contributing to the trivial part of the conservation law and set them to c(t, x) = b(t, x) = 0 and 

obtain the conserved quantities 

 

  (4.51) 

 

  (4.52) 

 

from which the conservation law corresponding to the multiplier  is given by 

 

  (4.53) 

 

Remark 4.2 It can be shown that the two sets of conserved quantities are conservation laws. Given that 

, the verification reaffirms that the one-dimensional equation is itself a conversation law. 

 

5. Conclusion 

In this manuscript, an infinite dimensional Lie algebra of Lie point symmetries has been applied to study a one-dimensional 

heat equation. A commutator table has been constructed for the obtained Lie algebra. We have also used symmetry reductions 

to compute exact group-invariant solutions, including a soliton. Conservation laws have also been derived for the model with 

the use of zeroth order multipliers. 
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