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Abstract 

We study a system of coupled Kortewegde Vries equations 

that model the propagation of shallow water waves, ion- 

acoustic waves in plasmas, solitons, and nonlinear 

perturbations along internal surfaces between layers of 

different densities in stratified fluids, for example 

propagation of solitons of long internal waves in oceans. 

Other applications of this kind of equations have been to 

model shock wave formation, turbulence, boundary layer 

behavior, and mass transport. The method presented is Lie 

group analysis. We first obtain Lie point symmetries and use 

them to carry out symmetry reductions and the resulting 

systems investigated for solutions. Traveling waves are 

constructed by use of a linear combination of time and space 

translation symmetries. 
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Introduction 

The dynamics of shallow-water waves, ion-acoustic waves in plasmas, and long internal waves in oceans can be described by 

coupled KdV equations. The equations are derived from the classical kdv equation. This section extends the previous study of 

kdV equations to that of a coupled nonlinear system. From the Kortweg-de Vries equation 

 

Ht + αHHx + βHxxx = 0, (1) 

 

for α and β as constants, we let 

  

H(t, x) = u(t, x) + iv(t, x), (2) 

 

where i2 = -1. Then substituting (2) into (1) and separating the real and imaginary parts, we obtain 

 

∆1 ≡ ut + αuux − αvvx + βuxxx = 0,  (3) 

 

∆2 ≡ vt + αuvx + αvux + βvxxx = 0,  (4) 

 

which is a nonlinear system of coupled KdV equations. We perform Lie symmetry analysis on (3), that is , we obtain Lie point 

symmetries, invariant solutions and conservation laws of (3). This paper uses Lie group analysis method to construct exact 

solutions and conservation laws for a nonlinear coupled kdV system (3). 

 

Preliminaries 

In this section, we outline preliminary concepts which are useful in the sequel. 

 

Local Lie groups. [5] In Euclidean spaces Rn of x = xi independent variables and Rm of u = uα dependent variables, we consider 

the transformations 
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Tϵ : x¯i = φi(xi, uα, ϵ), u¯α = ψα(xi, uα, ϵ), (5) 

 

involving the continuous parameter ϵ which ranges from a neighbourhood N′ ⊂ N ⊂ R of ϵ = 0 where the functions φi and ψα 

differentiable and analytic in the parameter ϵ 

 

Definition 0.1. The set of transformations given by (5) is a local Lie group if it holds true that 

 

1. (Closure) Given Tϵ1, Tϵ2 ∈ G, for ϵ1, ϵ2 ∈ N ′ ⊂ N, then 

Tϵ1 Tϵ2 = Tϵ3∈ G, ϵ3 = ϕ(ϵ1, ϵ2) ∈ N. 

 

2. (Identity) There exists a unique T0∈ G if and only if ϵ = 0 such that TϵT0 = T0Tϵ = Tϵ. 

 

3. (Inverse) There exists a unique Tϵ−1 ∈ G for every transformation Tϵ ∈ G, 

Where ϵ ∈ N ′ ⊂ N and ϵ−1 ∈ N such that 

TϵTϵ−1 = Tϵ−1 Tϵ = T0. 

 

Remark 0.2. Associativity of the group G in (5) follows from (1). 

Prolongations. In the system, 

 

∆α xi, uα, u(1), . . . , u(π) = ∆α = 0, (6) 

 

the variables uα are dependent. The partial derivatives u(1) = {ui
α}, u(2) = {uα }, . . . , u(π) = {uα i1...iπ}, are of the first, second, . . . , 

up to the πth-orders. 

 

Denoting 
 

 (7) 

 

the total differentiation operator with respect to the variables xi and δi
j, the Kronecker delta, we have 

 

 (8) 

 

where ui
α defined in (8) are differential variables [8]. 

 

(1) Prolonged groups Consider the local Lie group G given by the transformations 

 

 (9) 

 

Definition 0.3. The construction of the group G given by (9) is an equivalence of the computation of infinitesimal 

transformation 

 

  (10) 

 

obtained from (5) by a Taylor series expansion of φi(xi, uα, ϵ) and ψi(xi, uα, ϵ) in ϵ about ϵ = 0 and keeping only the terms linear 

in ϵ, where 

 

  (11) 

 

Remark 0.4. The symbol of infinitesimal transformations, X, is used to write (10) as 

 

x¯i ≈ (1 + X)xi, u¯α ≈ (1 + X)uα, (12) 

 

where 
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  (13) 

 

is the generator of the group G given by (9).  

 

Remark 0.5. To obtain transformed derivatives from (5), we use a change of variable formulae 

 

  (14) 

 

where D¯j is the total differentiation in the variables x¯i. This means that 

 

 (15) 

 

If we apply the change of variable formula given in (14) on G given by (9), we get 

 

 (16) 

 
Expansion of (16) yields 

 

 (17) 

 
The variables ¯u αi can be written as functions of xi , uα , u(1), that is 

  

 (18) 

 

Definition 0.6. The transformations in the space of the vari- ables xi, uα, u(1) given in (9) and (18) form the first prolongation 

group G [1]. 

 

Definition 0.7. Infinitesimal transformation of the first derivatives is 

 

 (19) 

 

Remark 0.8. In terms of infinitesimal transformations, the first prolongation group G [1] is given by (10) and (19).  

 

(2) Prolonged generators  

Definition 0.9. By using the relation given in (16) on the first prolongation group G [1] given by Definition 0.6, we obtain [5] 

 

  (20) 

 

  (21) 

 

and thus 

 

   (22) 

  

 is the first prolongation formula. 

 

Remark 0.10. Similarly, we get higher order prolongations [9], 

 

   (23) 

 

Remark 0.11. The prolonged generators of the prolongations G [1], . . . , G [κ] of the group G are 

  

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies                                                                              www.multiresearchjournal.com 

79 

  (24) 

where X is the group generator given by (13).  

 

Group invariants. 

 

Definition 0.12. A function Γ(xi , uα ) is called an invariant of the group G of transformations given by (5) if 

  

   (25) 

  

Theorem 0.13. A function Γ(xi , uα) is an invariant of the group G given by (5) if and only if it solves the following first-order 

linear PDE: [5] 

 

   (26) 

From Theorem (0.13), we have the following result. 

 

Theorem 0.14. The local Lie group G of transformations in Rn given by (5) [8] has precisely n − 1 functionally independent 

invariants. One can take, as the basic invariants, the left-hand sides of the first integrals 

 

   (27) 

Of the characteristic equations for (26): 

 

   (28) 

Symmetry groups. 

 

Definition 0.15. The vector field X (13) is a Lie point symmetry of the PDE system (6) if the determining equations 

 

   (29) 

 

are satisfied, where means evaluated on ∆α = 0 and X[π] is the π-th prolongation of X. 

 

Definition 0.16. The Lie group G is a symmetry group of the PDE system given in (6) if the PDE system (6) is form-invariant, 

that is  

 

    (30) 

 
Theorem 0.17. Given the infinitesimal transformations in (9), the Lie group G in (5) is found by integrating the Lie equations 

 

   (31) 

 
Lie algebras.  

Definition 0.18. A vector space Vr of operators [5] X (13) is a Lie algebra if for any two operators, Xi , Xj ∈ Vr, their commutator 

 

   (32) 

 

 is in Vr for all i, j = 1, . . . , r. 

 

Remark 0.19. The commutator satisfies the properties of bilinearity, skew symmetry and the Jacobi identity  [5].  

 

Theorem 0.20. The set of solutions of the determining equation given by (29) forms a Lie algebra [5]. 
 [21] 

Exact solutions. The methods of (G’/G)-expansion method, Extended Jacobi elliptic function expansion [22] and Kudryashov [23] 

are usually applied after symmetry reductions. 

 

Conservation laws. [10]  

Fundamental operators. Let a system of πth-order PDEs be given by (6). 
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Definition 0.21. The Euler-Lagrange operator δ/δuα is 

 

    (33) 

 

and the Lie- B¨acklund operator in abbreviated form [5] is 

 

   (34) 

 

Remark 0.22. The Lie- B¨acklund operator (34) in its prolonged form is 

 

   (35) 

Where 

 

   (36) 

 

and the Lie characteristic function is 

 

   (37) 

 

Remark 0.23. The characteristic form of Lie- B¨acklund operator (35) is 

 

   (38) 

 

Remark 0.24. Noether’s Theorem is applicable to systems from variational problems 

 

The method of multipliers. 

 

Definition 0.25. A function Λα (xi, uα, u(1), . . .) = Λα, is a multiplier of the PDE system given by (6) if it satisfies the condition 

that [17]  

 

   (39) 

 

where DiTi is a divergence expression 

 

Definition 0.26. To find the multipliers Λα, one solves the determining equations (40) [3], 

 

   (40) 

 

Ibragimov’s conservation theorem. The technique [10] enables one to construct conserved vectors associated with each Lie point 

symmetry of the PDE system given by (6). 

 

Definition 0.27. The adjoint equations of the system given by (6) are 

 

   (41) 

 

where vα is the new dependent variable. 

 

Definition 0.28. Formal Lagrangian L of the system (6) and its adjoint equations (41) is [10] 

 

   (42) 
 

Theorem 0.29. Every infinitesimal symmetry X of the system given by (6) leads to conservation laws [10] 

 

   (43) 
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where the conserved vector 

 

   (44) 

 

Main results 

An illustrative example with a simple kdV equation can be found in [7].We now present our results in this section. 

 

Nonlinear Coupled Korteweg-de Vries (KdV) Equations. 

Lie point symmetries and solutions of the nonlinear coupled KdV Equations (3). The infinitesimal transformations of the Lie 

group with parameter ϵ are 

 

  (45) 

 

The vector field 

 

   (46) 

is a Lie point symmetry of (3) if 

 

   (47) 

 

Expanding (47) and and splitting on derivatives of v and u, we have an overdetermined system of ten PDEs, namely, 

 

   (48) 

 

Solving the system (48) yields 

 

   (49) 
   

   (50) 

 

for arbitrary constants A1, A2, A3, A4. Hence from (49), the infinites imal symmetries of the coupled KdV Equations (3) is a 

Lie algebra generated by the vector fields 

 

   (51) 
 

   (52) 

 

0.0.1. Commutator table. The set of all infinitesimal symmetries of coupled KdV equations forms a Lie algebra and yield the 

following commutation relations in Table 1. 

 
Table 1: Commutation relations 

 

[Xi, Xj] X1 X2 X3 X4 

X1 0 0 αX2 3X1 

X2 0 0 0 X2 

X3 -αX2 0 0 -2X3 

X4 -3X1 -X2 2X3 0 

 

A commutator table for the Lie algebra generated by the symmetries of coupled KdV equation 
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0.0.2. Local Lie groups. The following Lie groups, for i = 1, 2, 3, 4, are obtained 

 

   (53) 

 

   (54) 

 

   (55) 

 

   (56) 

 

Symmetry reductions of the coupled KdV Equations (3). The symme tries obtained yield the following symmetry reductions.  

 

(i) The time translation symmetry 

 

   (57) 
 
Solving the characteristic equations 
 

   (58) 

 

associated to the operator X1 gives the invariants 

 

   (59) 
 
Hence, we have 

 

   (60) 

 

for arbitrary functions φ and ψ. Substituting the expressions for u and v given by (60) into the system (3), we get a system of 

third order ordinary DEs namely, 

 

   (61) 

 

Integration of the system (??)-(61) yields; 
 

   (62) 
 

   (63) 

 

for arbitrary constants C1 and C2. If we take 

 

 C1 = C2 = 0,   (64) 

 

the system (62)-(63) becomes 

 

   (65) 

 

   (66) 

 

To find more solutions of the system (65)-(66), we determine its Lie point symmetries. Using the Lie’s algorithm for 

computing point symmetries, we see that the Lie point symmetries of (65)- (66) are 

 

   (67) 
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Proceeding as above, we see that the symmetry X∗ 1 yields the trivial solution 

 

 u = 0, v = 0  (68) 

The second symmetry X∗ 2 has the characteristic equations 

 

   (69) 

 

which provides the invariants 

 

   (70) 

 

Letting 

 

   (71) 

 

substituting the values of φ and ψ into (65)-(66) and solving the resulting equations yield. 

 

(a) Case one. Taking 

 

   (72) 

 

gives 

   (73) 

 
or 

   (74) 

When 

  

   (75) 

 

we also get the trivial solution (68). One can easily see that if 

  

   (76) 

then 

   (77) 

 

which is a solution of the system (65)-(66). Hence 

 

   (78) 

is a solution of the coupled KdV system (3). 

 

(b) Case two. Taking 

 

   (79) 

gives 

 

   (80) 
with i 2 = −1. Consequently, 

 

   (81) 
and 
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   (82) 

 

are solutions of the coupled KdV system (3). Hence Lie group analysis has given us three steady-state solutions for the coupled 

KdV system (3) under the time translation symmetry X1 = ∂/∂t. 

 

(ii) The space translation symmetry 

   (83) 
Solving the characteristic equations 

 

   (84) 

 
associated to X2 gives the invariants 

 

   (85) 

 

Therefore, the group-invariant solution is 

 

   (86) 

 

for arbitrary functions h and ϕ. Substitution of the solutions from (86) into (3), we get a system of first order ordinary DEs, 

namely, 

 

   (87) 

 

which is integrated once with respect to t to yield 

 

   (88) 

 

for arbitrary constants C1 and C2. Consequently, the space translation group-invariant solution of the system (3) is 

 

   (89) 

 

(iii) The Galilean boost symmetry 

 

   (90) 
 

Solving the characteristic equations 

 

   (91) 
 

associated to Galilean boost gives the invariants 

 

   (92) 
 

Thus the invariant solution of (3) is 

 

   (93) 
 

for arbitrary functions f and g. Substitution of the values of u and v from (93) into the System (3), we get a nonlinear system of 

coupled first order ordinary DEs, namely, 

 

   (94) 
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whose solutions are 

 

   (95) 

 

for arbitrary constants C1 and C2. Hence the Galilean boost group-invariant solution of the system (3) is 

  

   (96) 

 

where A = −αC1 and t ≠ 0. 

 

(iv) The scaling 

 

   (97) 

 

By solving of the characteristic equations 

 

   (98) 

 

associated to this symmetry, we obtain the invariants 

 

   (99) 

 

Generally, the group-invariant solution pair is 

 

    (100) 

 

and the functions f and g satisfy the system of third order nonlinear coupled ordinary DEs 

 

   (101) 
 

   (102) 

 

(v) Linear combination of time and space translations 

 

   (103) 
 

We consider a symmetry X, which is a linear combination of the time and space translations symmetries, that is, 

 

   (104) 

 

for a constant c. The invariants associated to this symmetry X are 

 

   (105) 

 

Hence, the invariant solution for the symmetry X is 

 

   (106) 

 

for arbitrary functions f and g. Substitution of u and v from (106) into the system (3) yields a system of nonlinear third order 

ordinary DEs, namely 

 

   (107) 
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   (108) 
 

which on integrating once with respect to ξ yields 

 

   (109) 

 

for arbitrary constants C1 and C2. 
 

   (110) 

 

Remark 0.30. If we take the constants C1 = C2 = 0, then when the wave velocity c = 0, we can recover the stationary solutions 

given in (i). 

 

Remark 0.31. Traveling wave solutions of the system (3) must satisfy the system (109). 

 

Conclusion  

In this paper, Lie group analysis was employed in studying a nonlinear coupled kdV system. A four-dimensional Lie algebra of 

symmetries was found for the nonlinear coupled system KdV equations. This was spanned by space and time translations, 

Galilean boost and scaling symmetries where the scaling symmetry acts on four variables. Associated to each symmetry, we 

obtained symmetry reductions that gave six nontrivial solutions for the coupled system. All the group-invariant solutions 

describe the various states of the system. The obtained solutions can be used as a benchmark against numerical simulations. In 

future, we will construct conservation laws use them to obtain exact solutions.  

 

Acknowledgement  

The author acknowledges the Technical University of Kenya for appointment to the position of Tutorial Fellow. The author is 

also grateful to the referees for their careful reading of the manuscript and valuable comments. The author thanks the help from 

the editor too. 

 

Author’s contribution  

The author contributed wholly in writing this article and declares no conflict of interest. 

 

References 

1. Arigo DJ. Symmetry analysis of differential equations: an introduction, John Wiley & Sons, 2015. 

2. Bluman G, Anco S. Symmetry and integration methods for differential equations, Springer Science & Business Media, 

2008, 154. 

3. Bluman GW, Kumei S. Symmetries and differential equations, Springer Science & Business Media, 1989, 18. 

4. Bluman GW, Cheviakov AF, Anco SC. Applications of symmetry methods to partial differential equations, Springer, 

2010, 168. 

5. Ibragimov N. Elementary Lie group analysis and ordinary differential equations, Wiley, 1999. 

6. Owuor J, Khalique CM. Lie Group Analysis of Nonlinear Partial Differential Equations, Lambert Academic Publishers, 

2021, 1. 

7. Owuor J, Okelo NB. Lie Group Analysis of Nonlinear Coupled System of Korteweg-de Vries Equations, European 

Journal of Mathematical Analysis. 2021; 1:133-150. 

8. Ibragimov NH. CRC handbook of Lie group analysis of differential equations, CRC-Press, 1994, 1-3. 

9. Ibragimov NH. Selected works, ALGA publications, Blekinge Institute of Technology, Selected works, 2006-2009, 1-4. 

10. Ibragimov NH. A new conservation theorem, Journal of Mathematical Analysis and Applications. 2007; 333:311-328. 

11. Ibragimov NH. A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods. 

Nonlinear Mathematical Models. Symmetry and Invariance Principles, World Scientific Publishing Company, 2009. 

12. Khalique CM, Abdallah SA. Coupled Burgers equations governing polydispersive sedimentation; A lie symmetry 

approach. Results in Physics, 2020, 16. 

13. LeVeque RJ. Numerical methods for conservation laws, Springer, 1992, 3. 

14. Lie S. Vorlesungen ¨uber Differentialgleichungen mit bekannten infinitesimalen Transformationen. BG Teubner, 1891. 

15. Mhlanga I, Khalique C. Travelling wave solutions and conservation laws of the Korteweg-de VriesBurgers Equation with 

Power Law Nonlinearity. Malaysian Journal of Mathematical Sciences. 2017; 11:1-8. 

16. Noether E. Invariant variations problem, Nachr. Konig. Gissel. Wissen, Gottingen. Math. Phys. Kl, 1918, 235-257. 

17. Olver PJ. Applications of Lie groups to differential equations, Springer Science & Business Media, 1993, 107. 

18. Ovsyannikov L. Lectures on the theory of group properties of differential equations, World Scientific Publishing 

Company, 2013. 

19. PEH, Symmetry methods for differential equations: A beginner’s guide, Cambridge University Pres, 2013, 22. 

20. Wazwaz AM. Partial differential equations and solitary waves theory, Springer Science & Business Media, 2010. 

21. Naher, Hasibun, Abdullah, Farah Aini. The Improved ()’/GG-Expansion Method to the (3 Dimensional Kadomstev-

Petviashvili Equation, American Journal of Applied Mathematics and Statistics. 2013; 1(4):64-70. 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies                                                                              www.multiresearchjournal.com 

87 

22. Baojian Hong, Diachen Lu, Fushu Sun. The extended Jacobi Elliptic Functions expansion method and new exact solutions 

for the Zakharov equations, World Journal of Modelling and Simulation, 2009, 5. 

23. Ege SM, Misirli E. The  modified  Kudryashov  method   for   solving some fractional-order nonlinear equations, Adv. 

Difference Equ. 2014; 135:1-13. 

 

 

http://www.multiresearchjournal.com/

