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Abstract 

Nowadays, The three-phase AC induction motor (IMs), are 

widely used in industrial applications. In IM-driven systems 

requiring high control quality, the field-oriented control 

(FOC) method is often applied. In order to use the FOC 

control structure, it is required to identify the generated 

magnetic flux of the motor accurately. In this paper, the 

authors deal with the method calculate magnetic flux of 

Induction Motors using real-time microcontrollers. 
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1. Introduction 

For specific applications that require operators or researchers, intervention in the control structure to customize the technology 

process is necessary. C2000 DSP with an open structure, strong computing power [1-13] and competitive price opens up the 

prospect of building a complete control structure for the IM motor. With the permanent magnet (PM) motor, [14-21] the magnetic 

flux of the motor was pre-formed because the rotor is made of permanent magnets. Therefore, it is possible to implement the 

FOC control structure when the angle of magnetic flux is precisely determined. The magnetic flux of the IM motor is formed 

when the motor is powered. 

 

2. Methodology 

Equations for the flux of stator and rotor is shown in equation (1). 
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In which: 

 and . Ls is stator inductance, Lm is mutual inductance, Ls stator inductance, Lr rotor 

inductance, Lm mutual inductance, Lσs and Lσr are stator and rotor inductors,  is stator current, and  is rotor current. The 

IM motor in this study is a squirrel-cage induction motor, so the rotor voltage is zero. Therefore, equations for the stator and 

rotor voltages are as follows: 
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In which , with ωr is the slip velocity, ωs is the synchronous velocity, and ω is the rotor velocity. 

From (1), (2) and (3), we have: 
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  (3) 

Eliminating the rotor current and the stator flux from (4), we obtain a set of equations describing the motor on the coordinate 

system dq as follows: 

 

 (4) 

 

Selecting the rotation system dq with q axis perpendicular to the flux generated by the rotor, we have ψrd = 0.  

Substituting ψrd into (5), we have: 
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From this, we determine the torque equation and the equations for calculating and controlling rotor flux: 

 

 (9) 

 

and 

 

 (10) 

 

 (11) 
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Thus, isd is to control flux, and isq is to control torque. 

The magnetic flux model is crucial to motor control. That is, the magnetic flux model provides all state variables for motor 

control. It also provides the coordinate transfer angle for the voltage and current coordinate transformations. For 

microcontrollers, the ability to perform calculations depends on the sampling time. As a result, selecting of the microcontroller 

and the control algorithm directly determines the control quality of the drive system using the IM motor. 

Equation (8) is used to determine the rotor flux. Therefore, the formula to calculate the magnetic flux becomes: 

 

 (13) 

 

To apply to microcontroller easily, the above equation is discretized as follows: 
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 (14) 

 

The condition for the equation (14) to be exact is that the dq coordinate system must be in sync with the rotation angle of the 

rotor flux, and the d-axis must have the same direction with the magnetic flux vector. This leads to the need to calculate an 

accurate angle of the rotor flux. Based on equation (9), it is easy to determine the value of the synchronous angular velocity as 

follows: 

 

 (15) 

 

Discretizing the above equation, we get: 

 

 (16) 

 

Experimental results are shown in Fig 1. The error between the two values is the angle error of the synchronous magnetic field 

and the rotor flux. 

 

 
 

Fig 1: Experimental results of measuring the magnetic flux angle 
 

3. Conclusion 

Experimental results have proved the calculation ability of algorithms for magnetic flux models of three-phase asynchronous 

motors of C2000 series microcontrollers. The construction of an accurate magnetic flux model allows implementing the FOC 

control structure for the IM motor.  
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