Int. j. adv. multidisc. res. stud. 2022; 2(3):241-243

International Journal of Advanced Multidisciplinary Research and Studies

ISSN: 2583-049X

Received: 09-04-2022 Accepted: 19-05-2022

On the Positive Pell Equation $y^2 = 14x^2 + 18$

¹Dr. N Thiruniraiselvi, ²Dr. MA Gopalan, ³G Selvarathi

¹Assistant Professor, Department of Mathematics, Nehru Memorial College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India

² Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India

³ PG Scholar, Department of Mathematics, Nehru Memorial College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India

Corresponding Author: G Selvarathi

Abstract

The binary quadratic equation $y^2 = 14x^2 + 18$ representing the hyperbola is studied for its non-zero distinct integer solutions. A few interesting properties among the solutions

are presented. Employing the integer solutions of the equation under consideration, integer solutions for special straight lines, hyperbolas and parabolas are exhibited.

Keywords: Binary Quadratic, Hyperbola, Parabola, Integer Solutions, Pell Equation

1. Introduction

The binary quadratic equation of the form $y^2 = Dx^2 + 1$ where D is non-square positive integer has been studied by various mathematicians for its non-trivial integral solutions when D takes different integral values ^[1-4]. For an extensive review of various problems, one may refer [5-11]. In this communication, yet another interesting hyperbola given by $y^2 = 14x^2 + 18$ is considered and infinitely many integer solutions are obtained. A few interesting properties among the solutions are presented.

2. Method of analysis

The positive pell equation representing hyperbola under consideration is

 $v^2 = 14x^2 + 18$

whose smallest positive integer solutions is

$$x_0 = 3, y_0 = 12$$

To obtain the other solutions of (1), Consider the pell equation

$$y^2 = 14x^2 + 1$$

whose general solution is given by

 $\tilde{x}_n = \frac{1}{2\sqrt{14}}g_n$ $\tilde{y}_n = \frac{1}{2}f_n$

Where,

(1)

International Journal of Advanced Multidisciplinary Research and Studies

$$f_n = (15 + 4\sqrt{14})^{n+1} + (15 - 4\sqrt{14})^{n+1}$$
$$g_n = (15 + 4\sqrt{14})^{n+1} - (15 - 4\sqrt{14})^{n+1}$$

Appling Brahmagupta lemma between (x_0, y_0) and $(\tilde{x}_n, \tilde{y}_n)$, the other integer solutions of (1) are given by

$$x_{n+1} = \frac{3}{2}f_n + \frac{6}{\sqrt{14}}g_n$$
$$y_{n+1} = 6f_n + \frac{3\sqrt{14}}{2}g_n$$

The recurrence relations satisfied by x and y are given by

$$x_{n+1} - 30x_{n+2} + x_{n+3} = 0$$

$$y_{n+1} - 30y_{n+2} + y_{n+3} = 0$$

Some numerical examples of the x and y satisfying (1) are given in the following table

n	x_{n+1}	y_{n+1}
-1	3	12
0	93	348
1	2787	10428
2	83517	312492
3	2502723	9364332

From the above table, we observe some interesting relations among the solutions which are presented below.

- x_{n+1} are always odd and y_{n+1} are always even.
- Each of the following expressions is a nasty number
- $1008x_{2n+3} 29232x_{2n+2} 6048$
- $30240x_{2n+4} 26278560x_{2n+2} 907200$
- $252y_{2n+2} 882x_{2n+2} 126$
- $15120y_{2n+3} 1640520x_{2n+2} 340200$
- $452592y_{2n+4} 1471602888x_{2n+2} 304820712$
- $116928x_{2n+4} 3503808x_{2n+3} 24192$
- $438480y_{2n+2} 5292x_{2n+3} 340200$
- $29232y_{2n+3} 109368x_{2n+3} 1512$
- $438480y_{2n+4} 8193780x_{2n+3} 56700$
- $393302448y_{2n+2} 1584072x_{2n+4} 304820712$
- $= 13139280y_{2n+3} 1640520x_{2n+4} 340200$
- $281232y_{2n+2} 9072y_{2n+3} 36288$
- $875952y_{2n+4} 3277512x_{2n+4} 1512$
- $1755810 y_{2n+2} 1890 y_{2n+2} 1360800$
- $936432y_{2n+3} 31248y_{2n+4} 24192$

3. Remarkable observations

Table 1	1: Emplo	ying linea	combinations	among th	e solution o	f (1), or	ne may	generate	integer	solutions	for other	choices	of hypert	ola w	vhich
are presented in the table below															

S. No	Hyperbola	х, у			
1.	$8x^2 - 7y^2 = 288$	$ \begin{aligned} x &= x_{n+2} - 29x_{n+1} \\ y &= 31x_{n+2} - x_{n+2} \end{aligned} $			
2.	$8x^2 - 7y^2 = 259200$	$ \begin{aligned} x &= x_{n+3} - 869x_{n+1} \\ y &= 929x_{n+1} - x_{n+3} \end{aligned} $			
3.	$2x^2 - 7y^2 = 18$	$x = 2y_{n+1} - 7x_{n+1}$ $y = 4x_{n+1} - y_{n+1}$			
4.	$2x^2 - 7y^2 = 4050$	$x = 2y_{n+2} - 217x_{n+1}$ $y = 116x_{n+1} - y_{n+2}$			
5.	$x^2 - 14y^2 = 7257636$	$x = 4y_{n+3} - 13006 x_{n+1}$ $y = 3476x_{n+1} - y_{n+3}$			
6.	$144x^2 - 1134y^2 = 46656$	$x = 87x_{n+3} - 2607x_{n+2}$ $y = 929x_{n+2} - 31x_{n+3}$			
7.	$x^2 - 14y^2 = 8100$	$x = 116y_{n+1} - 14x_{n+2}$ $y = 4x_{n+2} - 31y_{n+1}$			
8.	$x^2 - 14y^2 = 36$	$x = 116y_{n+2} - 434x_{n+2}$ $y = 116x_{n+2} - 31y_{n+2}$			
9.	$x^2 - 14y^2 = 8100$	$x = 116y_{n+3} - 13006x_{n+2}$ $y = 3476x_{n+2} - 31y_{n+3}$			
10.	$x^2 - 14y^2 = 7257636$	$x = 3476y_{n+1} - 14x_{n+3}$ $y = 4x_{n+3} - 929y_{n+1}$			
11.	$x^2 - 14y^2 = 8100$	$x = 3476y_{n+2} - 434x_{n+3}$ $y = 116x_{n+3} - 929y_{n+2}$			
12.	$126x^2 - 144y^2 = 72576$	$x = 31y_{n+1} - y_{n+2}$ $y = y_{n+2} - 29y_{n+1}$			
13.	$x^2 - 14y^2 = 36$	$x = 3476y_{n+3} - 13006x_{n+3}$ $y = 3476x_{n+3} - 929y_{n+3}$			
14.	$567x^2 - 648y^2 = 293932800$	$x = 929y_{n+1} - y_{n+3}$ $y = y_{n+3} - 869y_{n+1}$			
15.	$14x^2 - y^2 = 8064$	$x = 929y_{n+2} - 31y_{n+3}$ $y = 116y_{n+3} - 3476y_{n+2}$			

S. No	Parabola	х, у
1.	$24x - 7y^2 = 288$	$x = x_{2n+3} - 29x_{2n+2} + 6$ $y = 31x_{n+2} - x_{n+2}$
2.	$720x - 7y^2 = 259200$	$x = x_{2n+4} - 869x_{2n+2} + 180$ $y = 929x_{n+1} - x_{n+3}$
3.	$3x - 7y^2 = 18$	$x = 2y_{2n+2} - 7x_{2n+2} + 3$ $y = 4x_{n+1} - y_{n+1}$
4.	$90x - 14y^2 = 8100$	$x = 2y_{2n+3} - 217x_{2n+2} + 45$ $y = 116x_{n+1} - y_{n+2}$
5.	$1347x - 14y^2 = 7257636$	$x = 4y_{2n+4} - 13006x_{2n+2} + 2694$ $y = 3476x_{n+1} - y_{n+3}$
6.	$16x - 14y^2 = 576$	$x = 87x_{2n+4} - 2607x_{2n+3} + 18$ $y = 929x_{n+2} - 31x_{n+3}$
7.	$45x - 14y^2 = 8100$	$x = 116y_{2n+2} - 14x_{2n+3} + 90$ $y = 4x_{n+2} - 31y_{n+1}$
8.	$3x - 14y^2 = 36$	$x = 116y_{2n+3} - 434x_{2n+3} + 6$ $y = 116x_{n+2} - 31y_{n+2}$
9.	$45x - 14y^2 = 8100$	$x = 116y_{2n+4} - 13006x_{2n+3} + 90$ $y = 3476x_{n+2} - 31y_{n+3}$
10.	$1347x - 14y^2 = 7257636$	$x = 3476y_{2n+2} - 14x_{2n+4} + 2694$ $y = 4x_{n+3} - 929y_{n+1}$
11.	$45x - 14y^2 = 8100$	$x = 3476y_{2n+3} - 434x_{2n+4} + 90$ $y = 116x_{n+3} - 929y_{n+2}$
12.	$126x - 12y^2 = 6048$	$x = 31y_{2n+2} - y_{2n+3} + 24$ $y = y_{n+2} - 29y_{n+1}$
13.	$3x - 14y^2 = 36$	$x = 3476y_{2n+4} - 13006x_{2n+4} + 6$ $y = 3476x_{n+3} - 929y_{n+3}$
14.	$315x - y^2 = 453600$	$x = 929y_{2n+2} - y_{2n+4} + 720$ $y = y_{n+3} - 869y_{n+1}$
15.	$168x^2 - y^2 = 8064$	$x = 929y_{2n+3} - 31y_{2n+4} + 24$ $y = 116y_{n+3} - 3476y_{n+2}$

 Table 2: Employing linear combinations among the solution of (1), one may generate integer solutions for other choices of parabola which are presented in the table below

4. Conclusion

In this paper, we have presented infinitely many integer solutions for the hyperbola represented by the positive pell equation $y^2 = 14x^2 + 18$. As the binary quadratic Diophantine equation are rich in variety, one may search for the other choices of positive pell equations and determine their solutions along with suitable properties.

5. References

- 1. Dickson LE. History of Theory of Numbers, Chelsea Publishing company, New York, 1952, 2.
- Mordel LJ. Diophantine Equations. Academic Press, New York, 1969.
- 3. Telang SJ. Number Theory. Tata McGraw Hill Publishing Company Limited, New Delhi, 2000.
- 4. David Burton M. Elementary Number Theory. Tata McGraw Hill Publishing Company Limited, New Delhi, 2002.
- 5. Mallika S, Hema D. On the negative pell equation $y^2 = 20x^2 11$. International Journal of Academic Research and Development. 2018; 3(3):33-40.
- 6. Meena K, Vidhyalakshmi S, Srilekha J. On the the negative pell equation $y^2 = 40x^2 36$. International journal for research in applied science and Engineering Technology (IJRASET). 2018; 6(1):39-46.
- 7. Meena K, Gopalan MA, Priya lakshmi T. On the the positive pell equation $y^2 = 35x^2 14$ ", International journal for research in applied science and Engineering Technology (IJRASET). 2019; 7(1):240-247.

- 8. Gopalan MA, Sathya A, Nandhinidevi A. On the the positive pell equation $y^2 = 15x^2 + 10$. International Journal for Research in Applied Science and Engineering Technology (IJRASET). 2019; 7(2):639-645.
- 9. Vidhyalakshmi S, Mahalakshmi T, Priya lakshmi T On the negative pell equation $y^2 = 14x^2 - 13$ ". EPRA International Journal of Multidisciplinary Research (IJMR). 2019; 5(4):192-201.
- 10. Vidhyalakshmi S, Mahalakshmi T, Tamilselvi V, Vidhya V, Gopalan MA. Observations on two special pell equations $y^2 = 30x^2 + 19$ and $y^2 = 12x^2 44$. (JETIR). 2019; 6(6):296-308.
- 11. Thriuniraiselvi N, Gopalan MA. On the equation $y^2 = 11x^2 + 22$. Academic Journal of Applied Mathematical Science in (Google Scholar). 2020; 6(7):85-92.