International Journal of Advanced Multidisciplinary Research and Studies

ISSN: 2583-049X

On the non-homogenous quadratic with two unknowns $5 x^{2}-2 y^{2}=117$

${ }^{1}$ Dr. N Thiruniraiselvi, ${ }^{2}$ Dr. MA Gopalan, ${ }^{3}$ E Poovarasan
${ }^{1}$ Assistant Professor, Department of Mathematics, Nehru Memorial College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India
${ }^{3}$ PG Scholar, Department of Mathematics, Nehru Memorial College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India
Corresponding Author: E Poovarasan

[^0]its solutions are presented. Also, knowing an integral solution of the given hyperbola, integer solutions for other choices of hyperbolas and parabolas are presented.

Keywords: Pell Like Equation, Binary Quadratic, Hyperbola, Parabola

1. Introduction

The binary quadratic Diophantine equations of the form $a x^{2}-b y^{2}=N,(a, b, N \neq 0)$ are rich in variety and have been analyzed by many mathematicians for their respective integer solutions for particular values of a, b and N. In this context, one may refer ${ }^{[1-12]}$.
This communication concerns with the problem of obtaining non-zero distinct integer solutions to the binary quadratic equation given by $5 x^{2}-2 y^{2}=117$ representing hyperbola. A few interesting relations among its solutions are presented. Knowing an integral solution of the given hyperbola, integer solutions for other choices of hyperbolas and parabolas are presented.

2. Method of analysis

The hyperbola represented by the non-homogeneous quadratic equation under consideration is

$$
\begin{equation*}
5 x^{2}-2 y^{2}=117 \tag{1}
\end{equation*}
$$

Introduction of the linear transformations

$$
\begin{equation*}
x=X+2 T, y=X+5 T \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
X^{2}=10 T^{2}+39 \tag{3}
\end{equation*}
$$

The smallest positive integer solution for (3) is $T_{0}=1, X_{0}=7$

To find the other solutions to (3), consider the corresponding pell equation given by

$$
\begin{equation*}
X^{2}=10 T^{2}+1 \tag{4}
\end{equation*}
$$

whose general solution $\left(\tilde{T}_{n}, \tilde{X}_{n}\right)$ is

$$
\begin{aligned}
& \tilde{X}_{n}=\frac{1}{2} f_{n} \\
& \tilde{T}_{n}=\frac{1}{2 \sqrt{10}} g_{n}
\end{aligned}
$$

Where,

$$
\begin{aligned}
& f_{n}=(19+6 \sqrt{10})^{n+1}+(19-6 \sqrt{10})^{n+1} \\
& g_{n}=(19+6 \sqrt{10})^{n+1}-(19-6 \sqrt{10})^{n+1}
\end{aligned}
$$

$>$ Employing the lemma of Brahmagupta between the solutions, $\left(T_{0}, X_{0}\right) \&\left(\tilde{T}_{n}, \tilde{X}_{n}\right)$ the general solution $\left(T_{n+1}, X_{n+1}\right)$ to (3) is given by

$$
\begin{aligned}
& T_{n+1}=T_{0} \tilde{X}_{n}+X_{0} \tilde{T}_{n} \\
& \quad=\frac{1}{2} f_{n}+7 * \frac{1}{2 \sqrt{10}} g_{n} \\
& \quad X_{n+1}=X_{0} \tilde{X}_{n}+D T_{0} \tilde{T}_{n} \\
& \quad=\frac{7}{2} f_{n}+\frac{\sqrt{10}}{2} g_{n}
\end{aligned}
$$

where $n=-2,-1,0,1, \ldots \ldots$.
In view of (2), the general solution $\left(x_{n+1}, y_{n+1}\right)$ to (1) is given by

$$
\begin{aligned}
x_{n+1} & =X_{n+1}+2 T_{n+1} \\
& =\frac{9}{2} f_{n}+12 * \frac{1}{\sqrt{10}} g_{n} \\
y_{n+1} & =X_{n+1}+5 T_{n+1} \\
& =6 f_{n}+45 * \frac{1}{2 \sqrt{10}} g_{n}
\end{aligned}
$$

The recurrence relation satisfied by x and y are given by

$$
\begin{aligned}
& x_{n+1}-38 x_{n+2}+x_{n+3}=0 \\
& y_{n+1}-38 y_{n+2}+y_{n+3}=0
\end{aligned}
$$

A few numerical solutions to (1) are presented in table below:
Table 1: Numerical solutions

\mathbf{n}	x_{n+1}	y_{n+1}
-2	27	-42
-1	9	12
0	315	498
1	11961	18912
2	454203	718158
3	17247753	27271092

From the above table, we observe some interesting relations among the solutions which are presented below:

1) x_{n+1} are always even and y_{n+1} are always odd.
2) Each of the following expressions is a nasty number
(i) $517920 x_{2 n+2}-12480 x_{2 n+3}-730080$
(ii) $747402240 x_{2 n+2}-474240 x_{2 n+4}-1054235520$
(iii) $70200 x_{2 n+2}-37440 y_{2 n+2}-182520$
(iv) $46683000 x_{2 n+2}-711360 y_{2 n+3}-65889720$
(v) $269065087000 x_{2 n+2}-107976960 y_{2 n+4}-3795255190000$
(vi) $9692705620000 x_{2 n+3}-255233048000 x_{2 n+4}-359786344000$
(vii) $48016800 x_{2 n+3}-1062771840 y_{2 n+4}-2372029920$
(viii) $9828000 x_{2 n+3}-6215040 y_{2 n+3}-730080$
(ix) $7090480800 x_{2 n+3}-118085760 y_{2 n+4}-263558880$
(x) $50614200 x_{2 n+4}-42542922240 y_{2 n+2}-94881379320$
(xi) $186732000 x_{2 n+4}-4484413440 y_{2 n+3}-263558880$
(xii) $93295800 x_{2 n+4}-59005440 y_{2 n+4}-182520$
(xiii) $526500 y_{2 n+3}-18427500 y_{2 n+2}-41067000$
(xiv) $10985463570000 y_{2 n+4}-14599681090000000 y_{2 n+2}-32560913980000000$
(xv) $112112900000 y_{2 n+4}-4257087354000 y_{2 n+3}-249851628000$
3. Remarkable observations
1). Employing linear combinations among the solution of (1), one may generate integer solutions for other choices of hyperbola which are presented in the table below:

Table 2: Observations

S.NO	Hyperbola	\mathbf{x}, \mathbf{y}
1.	$16 x^{2}-90 y^{2}=219024$	$x=83 x_{n+1}-2 x_{n+2}$ $y=x_{n+2}-35 x_{n+1}$
2.	$64 x^{2}-90 y^{2}=316270656$	$x=1576 x_{n+1}-x_{n+3}$ $y=x_{n+3}-1329 x_{n+1}$
3.	$4 x^{2}-10 y^{2}=6084$	$x=15 x_{n+1}-8 y_{n+1}$ $y=6 y_{n+1}-8 x_{n+1}$
4.	$4 x^{2}-10 y^{2}=2196324$	$x=525 x_{n+1}-8 y_{n+2}$ $y=6 y_{n+2}-332 x_{n+1}$
5.	$4 x^{2}-40 y^{2}=3162712644$	$x=19935 x_{n+1}-8 y_{n+3}$ $y=3 y_{n+3}-6304 x_{n+1}$
6.	$x^{2}-810 y^{2}=1971216$	$x=37824 x_{n+2}-996 x_{n+3}$ $y=35 x_{n+3}-1329 x_{n+2}$
7.	$4 x^{2}-40 y^{2}=19766916$	$x=45 x_{n+2}-996 y_{n+1}$ $y=315 y_{n+1}-12 x_{n+2}$
8.	$4 x^{2}-360 y^{2}=54756$	$x=1575 x_{n+2}-996 y_{n+2}$ $y=105 y_{n+2}-166 x_{n+2}$
9.	$4 x^{2}-40 y^{2}=2196324$	$x=19935 x_{n+2}-332 y_{n+3}$ $y=105 y_{n+3}-6304 x_{n+2}$
10.	$4 x^{2}-10 y^{2}=3162712644$	$x=15 x_{n+3}-12608 y_{n+1}$ $y=7974 y_{n+1}-8 x_{n+3}$
11.	$4 x^{2}-40 y^{2}=2196324$	$x=525 x_{n+3}-12608 y_{n+2}$ $y=3987 y_{n+2}-166 x_{n+3}$
12.	$x^{2}-10 y^{2}=6084$	$x=39870 x_{n+3}-25216 y_{n+3}$ $y=7974 y_{n+3}-12608 x_{n+3}$
13.	$25 x^{2}-10 y^{2}=1368900$	$x=3 y_{n+2}-105 y_{n+1}$ $y=166 y_{n+1}-4 y_{n+2}$
14.	$123543225 x^{2}-21963240 y^{2}=1085363800000000$	$x=y_{n+3}-1329 y_{n+1}$
15.	$342225 x^{2}-60840 y^{2}=8328387600$	$y=3152 y_{n+1}-2 y_{n+3}$

2). Employing linear combinations among the solution of (1), one may generate integer solutions for other choices of parabola which are presented in the table below:

Table 3: Observations
$\left.\left.\begin{array}{|c|c|c|}\hline \text { S. No } & \text { Parabola } & \mathbf{x}, \mathbf{y} \\ \hline 1 . & 104 x-10 y^{2}=24336 & \begin{array}{c}x=83 x_{2 n+2}-2 x_{2 n+3}+117 \\ y=x_{n+2}-35 x_{n+1}\end{array} \\ \hline 2 . & 7904 x-10 y^{2}=35141184 & x=1576 x_{2 n+2}-x_{2 n+4}+2223 \\ y=x_{n+3}-1329 x_{n+1}\end{array}\right] \begin{array}{cc}x=15 x_{2 n+2}-8 y_{2 n+2}+39 \\ y=6 y_{n+1}-8 x_{n+1}\end{array}\right]$

5.	$56238 x-40 y^{2}=3162712640$	$x=19935 x_{2 n+2}-8 y_{2 n+4}+28119$ $y=3 y_{n+3}-6304 x_{n+1}$
6.	$6084 x-7020 y^{2}=17083872$	$x=37824 x_{2 n+3}-996 x_{2 n+4}+1404$ $y=35 x_{n+3}-1329 x_{n+2}$
7.	$4446 x-40 y^{2}=19766916$	$x=45 x_{2 n+3}-996 y_{2 n+2}+2223$ $y=315 y_{n+1}-12 x_{n+2}$
8.	$26 x-40 y^{2}=6084$	$x=1575 x_{2 n+3}-996 y_{2 n+3}+117$ $y=105 y_{n+2}-166 x_{n+2}$
9.	$1482 x-40 y^{2}=2196324$	$x=19935 x_{2 n+3}-332 y_{2 n+4}+741$ $y=105 y_{n+3}-6304 x_{n+2}$
10.	$56238 x-10 y^{2}=3162712644$	$x=15 x_{2 n+4}-12608 y_{2 n+2}+28119$ $y=7974 y_{n+1}-8 x_{n+3}$
11.	$1482 x-40 y^{2}=2196324$	$x=525 x_{2 n+4}-12608 y_{2 n+3}+741$ $y=3987 y_{n+2}-166 x_{n+3}$
12.	$39 x-10 y^{2}=6048$	$x=39870 x_{2 n+4}-25216 y_{2 n+4}+78$ $y=7974 y_{n+3}-12608 x_{n+3}$
13.	$2925 x-10 y^{2}=1368900$	$x=3 y_{2 n+3}-105 y_{2 n+2}+234$ $y=166 y_{n+1}-4 y_{n+2}$
14.	$123543225 x-14820 y^{2}=732364237800$	$x=y_{2 n+4}-1329 y_{2 n+2}+2964$ $y=3152 y_{n+1}-2 y_{n+3}$
15.	$342225 x-780 y^{2}=106774200$	$x=70 y_{2 n+4}-2658 y_{2 n+3}+156$ $y=6304 y_{n+2}-166 y_{n+3}$

4. Conclusion

In this paper, we have made an attempt to obtain all integer solutions through a single process. To conclude, one may search for the equations for which the above method is applicable.

5. References

1. Gopalan MA, Anbuselvi R. Integral solutions of $4 a y^{2}-(a-1) x^{2}=3 a+1$. Acta Ciencia Indica. 2008; 34(1):291-295.
2. Gopalan, et al. Integral points on the hyperbola $(a+2) x^{2}-a y^{2}=4 a(k-1)+2 k^{2}, a, k>0$. Indian Journal of Science. 2012; 1(2):125-126.
3. Gopalan MA, Devibala S, Vidhyalakshmi R. Integral Points on the hyperbola $2 X^{2}-3 Y^{2}=5$. American Journal of Applied Mathematics and Mathematical Sciences. 2012; 1(1):1-4.
4. Gopalan MA, Sangeetha G, Manju Somanath. Integral Points on the h Integral Points on the hyperbola $(a+2) x^{2}+a y^{2}=4 a(k-1)+2 k^{2}, a, k>0$. Indian Journal of Science. 2012; 1(2):125-126.
5. Vidhyalakshmi S, et al. Observations on the hyperbola $a x^{2}-(a+1) y 2=3 a-1$. Discovery. 2013; 4(10):22-24.
6. Gopalan MA, Vidhyalakshmi S, Kavitha A. Observations the hyperbola $10 y^{2}-3 x^{2}=13$. Archimedes J. Math. 2013; 3(1):31-34.
7. VijayasankarA, Gopalan MA, Krithika V. On the binary quadratic equation $a x^{2}-(a+1) y^{2}=a$. World Journal of Engineering Research and Technology. 2017; 3(5):473-479.
8. Vijayasankar A, Gopalan MA, Krithika V. On the Hyperbola $2 x^{2}-3 y^{2}=15$. Indo - Iranian Journal of Scientific Research. 2017; 1(1):144-153.
9. Shreemathi Adiga, Anusheela N, Gopalan MA. Observations on the hyperbola $8 x^{2}-5 y^{2}=27$. IJMA. 2018; 9(9):65-73.
10. Vidhyalakshmi S, Premalatha E, Maheshwari D. On the Non-Homogeneous Binary Quadratic Equation $4 x^{2}-3 y^{2}=37$. Bulletin of Pure and Applied Sciences. 2019; 38(1):324-328.
11. Shanthi J, Maheswri R, Gopalan MA, Tamilselvi V. A Peer Search on Integral Solutions to Non-Homogeneous Binary Quadratic Equation $15 x^{2}-2 y^{2}=78$. Journal of Scientific Computing. 2020; 9(3):108-131.
12. Thriuniraiselvi N, Gopalan MA. On the equation $y^{2}=11 x^{2}+22$. Academic Journal of Applied Mathematical Science in (Google Scholar). 2020; 6(7):85-92.

[^0]: Abstract

 The hyperbola represented by the binary quadratic equation $5 x^{2}-2 y^{2}=117$ is analyzed for finding its non-zero distinct integer solutions. A few interesting relations among

