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Abstract 

In High Temperature Superconductors (HTCSs) Molecular 

Effect Model (MEM) publication series, Critical 

Temperature Inverse Least Squares Predictions (ILS) with 

2D Numerical/Graphical Optimization in Thallium group of 

[Tl-Sn-Pb-Ba-Si-Mn-Mg-Cu-O] are shown. These 

approximations are constrained for selected compounds with 

[TC ˂ 0°, TC > 0°]. Tetragonal Lattice and Amorphous 

compounds of this Thallium class are not included yet. 

Results, additionally, comprise a 2D Statistics Graphics 

series subject to these conditions with 97% Confidence 

Intervals. Solutions and low errors with 2D Numerical 

Optimization techniques to validate the MEM for this class 

are presented. 2D Graphical-Statistical results comprise 97% 

confidence interval approximations. Electronics Physics 

applications for Superconductors in general, and HTSCs are 

described. 

Keywords: Interior Optimization (IO) Methods, Graphical Optimization, Systems of Nonlinear Equations, Tikhonov 

Regularization (TR), Critical temperature [Tc], Inverse Least Squares (ILS), Electronics Superconductors (SC) 

Introduction 

This subsequent research study follows the series of publications in Superconductors (SCs) and High Temperature 

Superconductors (HTSCs) for critical temperature [Tc] modelling optimization [1, 4-6, 42, 43, 44]. The model used is Molecular 

Effect Model (MEM). The objective in this paper is to develop MEM statistical graphs/results, show numerical equations 

explicitly for several polynomial degrees of MEM, and calculate TC numerical predictions with this data. 

In the HTSCs Thallium class [Tl-Sn-Pb-Ba-Si-Mn-Mg-Cu-O] the atomic mass of every element could vary in function of the 

selected isotope. For example, Thallium atomic mass could fluctuate approximately from 176 to 216 depending on the type of 

isotope theoretically selected for the HTSC molecule. Other molecular elements, such as Barium, Copper or Oxygen, can also 

differ in AMU. Additionally, although the isotopes atomic mass differences could be small, the valences in this HTSC class are 

so high that it can create a change/variation in molecular weight. Other reason is that new upcoming compounds of Thallium 

class whose molecular mass might be within this interval could be subject for this approximate TC predictions type [14-16, 26-29, 32-

34, 44-47]. 

Therefore, what is meant in this study is to obtain approximate numerical predictions for TC with the optimal equations and 2D 

graphics previously calculated. Numerical predictions are useful both for current sc-materials and prospective ones. In this 

research, MATLAB system is applied to achieve 2D Graphical Optimization, ILS Numerical Equations, and TC MEM 

Predictions Tables. The study improvement is that MEM covers TC data for [TC ˂ 0°, TC > 0°]. Comparisons to previous 

contributions are evaluated [1, 4-6, 42, 43, 44]. 

Concisely, this continuing article provides a MATLAB system 2D Numerical-Graphical optimization research for MEM in 

HTSCs Thallium [Tl-Sn-Pb-Ba-Si-Mn-Mg-Cu-O] class with Statistics, explicit equations and Numerical TC Predictions. 

Residuals and errors for the ILS MEM are studied and statistical graphics with 97% Confidence intervals are shown. The 

MATLAB MEM 2D shapes ratifie clearly sinusoid MEM curves got in [43, 44]. Electronics Physics applications emerge from all 

the results.  

 

Mathematical and computational methods  

The MEM MATLAB computational method experimental data and implemented algorithm is developed almost equal in 
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equations than the ones presented in [1, 4-6, 42, 43, 44]. However, 

this research covers TC data for [TC ˂ 0°, TC > 0°]. Software 

is developed in MATLAB with subroutines and patterns 

improved to obtain numerical data such as original Tables 3-

6. Optimization algorithm is constructed with Inverse 

Tikhonov Regularization Theory [7, 13, 31, 42, 43, 44]. Table 1 

shows Numerical Experimental Data for MEM [4-6, 12-15, 32-34, 

37, 42, 43, 44]. Table 2 widens TC data for [TC ˂ 0°], but 

Tetragonal Lattice and Amorphous compounds are not 

included yet. 

 
Table 1: The development data [TC > 0°] for optimization of 

parameters for Graphical/Numerical-Algorithms MEM in Thallium 

HTSCs [Tl-Sn-Pb-Ba-Si-Mn-Mg-Cu-O] class implemented like in 

[43, 44]. This method was used in previous studies with different 

HTSCs materials [1, 42, 43, 44]. 
 

 
 
Table 2: The development data [TC ˂ 0°] for 2D Graphical and Numerical 
Optimization of MEM parameters in HTSCs [Tl-Sn-Pb-Ba-Si-Mn-Mg-Cu-

O] Thallium group implemented [1, 42, 43, 44]. 
 

 
 

Basic MEM formulas/algorithms from [4-6, 12-15, 32-34, 37, 42, 43, 

44] are implemented in MATLAB for this study. Equation (1) 

shows Inverse Tikhonov functional method like [42, 43, 44]. 

The formulation algorithm of Isotope Effect comes from [1, 

42, 43, 44]. The ILS Inverse Tikhonov algorithm MEM, with a 

polynomial p(MO) reads, 

  

 
 

(1) 

 

where, as [1, 4-6, 42, 43, 44], MO is the molecular mass of the 

HTSC selected (i) within a HTSC group with (i) elements 

and [a-b] are constraints intervals. TCi is every critical 

temperature (Centigrade in this MEM Thallium HTSCs 

class) for each (i) member of HTSCs group. The figure α1 is 

a specific constant for Inverse Tikhonov Regularization. The 

constraints, related to TC and MO values from experimental 

data, [a-b], are implemented in optimization. Linear 

Logarithmic-form, like in Equation (1) of [44], could also be 

used. 

 

Results 

First results section is 2D MEM Graphical Statistical-

Optimization of MEM Thallium class for [TC ˂ 0°, TC > 0°], 

Fig 1, 2. Those graphs confirm MATLAB and GNU-Octave 

solutions obtained in [43, 44]. Second section shows ILS 

Numerical Equations for 4, 5 polynomial-degrees, Tables 3, 

4, and respectively their Numerical Prediction, Tables 5, 6. 

Optimal ILS MEM numerical results correspond to Tables 

3, 4. In Tables 3,4, it is proven the 4, 5-degree finest MEM 

[42, 43, 44]. Fig 3 from [44], shows a GNU-Octave dual-

optimization for Thallium class constrained to [TC > 0°], 

which validates the analytic geometry of Statistical Fig 1, 2. 

Definitely, MEM sinusoid-like shape is demonstrated for 

this Thallium HTSCs group, in contrast with parabolic 

curves for MEM of [Sn-Sb-Te-Ba-Mn-Cu-O] class [42].  
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2D Statistical Optimization  

 

 
 

Fig 1: - 3-Degree Matlab polynomial MEM 2D Graphical Statistical Optimization with 97% Confidence Interval for MEM [TC ˂ 0°, TC > 

0°]. Experimental data [red points], MEM curve [blue], Confidence Intervals [dashed-blue lines]. Running time is approximately 2-5 seconds 

shorter than GNU-Octave [44]. 
 

 
 

Fig 2: - 5-Degree Matlab polynomial MEM 2D Graphical Statistical Optimization with 97% Confidence Interval for MEM [TC ˂ 0°, TC > 

0°]. Experimental data [red points], MEM curve [blue], Confidence Intervals [dashed-blue lines]. Running time is approximately 2-5 seconds 

shorter than GNU-Octave [44]. 
 

Numerical Equations for [TC ˂ 0°, TC > 0°] and TC 

Predictions 

 

The numerical ILS polynomial explicit equations are shown 

in Tables 3,4. TC Predictions for 4- and 5-degrees ILS 

polynomial fits are presented at Tables 5,6. Residuals are 

acceptable, although errors are rather high about [+/- 6 

Centigrade]. Fig 3 from [43], shows a comparative previous 

GNU-Octave dual-optimization for Thallium class 

constrained to [TC > 0°], which confirms the analytic 

geometry of Fig 1, 2. 
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Table 3: MATLAB software 4-degree ILS MEM polynomial 

equation Thallium HTSCs class [Tl-Sn-Pb-Ba-Si-Mn-Mg-Cu-O] 

HTSCs group subject to [TC ˂ 0°, TC > 0°]. 4th coefficient is 

discarded [≈ 10-12]. Residual magnitude is acceptable. 
 

 
 
Table 4: Matlab software 5-degree ILS MEM polynomial equation 

Thallium HTSCs class [Tl- Sn-Pb-Ba-Si-Mn-Mg-Cu-O] HTSCs 

group subject to [TC ˂ 0°, TC > 0°]. 5th coefficient is discarded [≈ 

10-12]. Residual magnitude is acceptable. Curve graphics 

corresponds to Fig 2. 
 

 
 

 

 

 

 
 

Table 5: - 4 Degree ILS MEM MATLAB Numerical Predictions, 

[MO Molecular Mass, TC Experimental, TC MEM Predicted, Error 

([TC Experimental] - [TC Predicted])]. Error magnitude probably is 

caused by the nonlinear increase of Molecular Mass related to 

increment of TC
 [43, 44]. 

 

 
 
Table 6: - 5 Degree ILS MEM MATLAB Numerical Predictions, 

[MO Molecular Mass, TC Experimental, TC MEM Predicted, Error 

([TC Experimental] - [TC Predicted])]. Error magnitude probably is 

caused by the nonlinear increase of Molecular Mass related to 

increment of TC
 [43, 44]. 
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Fig 3: - From [44], an illustrative 3-4 Degree comparative dual-approach, GNU-Octave, with 3, 4-Degree ILS MEM polynomial optimization 

for [Tl-Sn-Pb-Ba-Si-Mn-Mg-Cu-O] Thallium HTSCs group. 3-Degree (black) is linear, and it is seen how when passing on 4-Degree (green) 

polynomial the curve begins to take sinusoid shape. Overlap is almost complete along the experimental data line, which proves the fit 

correctness. Experimental MEM data is not implemented as it would create an unclear image. Since this HTSCs class has a number of 

compounds with TC ˂ 0°, MEM confirms clearly that affinity with the green 3, 4-Degree shape [43, 44]. 
 

Discussion and conclusions 

The objective of this continuing research was to broaden the 

HTSCs Thallium class TC range, implementing more 

experimental database from TC ˂ 0° to improve previous 

studies [42, 43, 44]. There are three strands, numerical 

determination of new ILS MEM equations, 2D Statistical-

Graphical Optimization to validate the analytical geometry 

of the Thallium class MEM, and numerical predictions of TC 

based on these data.  

The curves obtained confirm the shapes obtained in previous 

research [43, 44] for TC > 0° exclusively [43, 44]. ILS polynomial 

equations result very similar numerically than [43, 44]. 

Predictions errors are about [+/- 6], and this figure can be 

considered rather too high at this MEM stage. 

The reasons for these prediction errors could be the 

nonlinear increase of the TC values related to molecular 

mass, Tables 1, 2. However, tetragonal compounds of this 

group were not included into implemented data for ILS 

MEM optimization. 

MATLAB 2D Graphical Optimization validates results got 

with GNU-Octave in [44]. MATLAB imaging processing 

running time is shorter than GNU-Octave [44], about 2-5 

seconds, and imaging quality is approximately equal.  

In brief, this MEM following study broadens imaging and 

numerical data with the inclusion of [TC ˂ 0°] data. It has 

improved and provided/confirmed previous results [43, 44]. 

However, MEM numerical predictions errors are rather high 

at this stage. Applications in Electronics Physics of HTSCs 

Thallium class could be obtained from 2D 

Numerical/Graphical and Numerical Predictions analysis 

results. 

 

Scientific ethics standards 

Important note: In previous publication with MATLAB, 

[43], a printing mistake in polynomial constant is the default 

of negative sign. The correct value is [-8.2906e+03], and 

NOT like in [43], [+8.2906e+03]. This article comprises 

original GNU-Octave software-variation related to previous 

publications series [1, 4-6, 42, 43]. 2D/3D Graphical 

Optimization Methods were created by Dr Francisco 

Casesnoves in 3rd November 2016, and Interior 

Optimization Methods in 2019. 2D/3D/4D Graphical and 

Interior Optimization Methods were created by Dr Francisco 

Casesnoves in 2020. This article has previous papers 

information, whose inclusion is essential to make the 

contribution understandable. The 2D Graphical 

Optimization in GNU-Octave constitutes a software 

engineering improvement from previous contributions [1, 4-6, 

42, 43]. The 2D/3D/4D Interior Optimization method is 

original from the author (August 2020-1). This study was 

carried out, and their contents are done according to the 

European Union Technology and Science Ethics. Reference, 

‘European Textbook on Ethics in Research’. European 

Commission, Directorate-General for Research. Unit L3. 

Governance and Ethics. European Research Area. Science 

and Society. EUR 24452 EN [38-41]. And based on ‘The 

European Code of Conduct for Research Integrity’. Revised 

Edition. ALLEA. 2017. This research was completely done 

by the author, the computational-software, calculations, 

images, mathematical propositions and statements, reference 

citations, and text is original for the author. When a 

mathematical statement, proposition or theorem is 

presented, demonstration is always included. If any results 

inconsistency is found after publication, it is clarified in 

subsequent contributions. The article is exclusively 

scientific, without any commercial, institutional, academic, 

religious, religious-similar, non-scientific theories, personal 

opinions, political ideas, or economical influences. When 

anything is taken from a source, it is adequately recognized. 

Ideas and some text expressions/sentences from previous 

publications were emphasized due to a clarification aim [38-

41]. 
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