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Abstract 

We study a special simple ’kdv type’ equation by Lie group 

analysis. The obtained Lie point symmetries are used to 

carry out symmetry reductions and the resulting reduced 

systems investigated for exact solutions. Traveling waves 

obtained are a linear span of time and space translation 

symmetries. The multiplier technique has been employed in 

the construction of conserved vectors for KdV equation. 
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1. Introduction 

A Scottish mathematician, John Scott Russell [25] is credited for being the first to work in solitary waves in 1844. Russell 

observed water waves, set in motion by a boat drawn in Edinburg-Glasgow canal, that maintained shape and structure. He also 

conducted experiments, which culminated to the discovery of solitons-localized, highly stable waves whose shape and speed 

are invariant with time. In 1895, Diederik Johannes Korteweg (1848-1941) alongside his PhD student, Gustav de Vries 

analytically derived the non-linear partial differential equation, present day Korteweg-de Vries equation. However, a 

prominent French mathematician Joseph Valentin Boussinesq (1842- 1929) had earlier introduced the Korteweg-de Vries 

equation in 1877 in his work on water waves prior to this development. This elegant equation models the disturbance of the 

surface of shallow water in the presence of solitary waves. The aforementioned equation in a simple form is given by 

 

  (1.1) 

 

and combines non-linearity term uux which localizes the wave and linear dispersion term uxxx which spreads it out. Note that 

u(x, t) denotes the elongation of the wave at place x and time t. The KdV equation shows up in a wide range of physics 

phenomena, especially those exhibiting shock waves, traveling waves and solitons. In the area of quantum mechanics, some 

theoretical physics phenomena are explained by means of a Korteweg-de Vries equation model. Some of the numerous 

applications are in aerodynamics, fluid dynamics, and continuum mechanics as a model for shock wave formation, solitons, 

turbulence, boundary layer behaviour and mass transport. Indeed, Korteweg-de Vries equation is ubiquitous and very 

important in the theory of integrable systems given that it is known to possess an infinite number of conservation laws and 

gives rise to multiple-soliton solutions. Observe that through scaling, we associate any equation of the form 

 

 αut + βuux + γuxxx = 0, (1.2) 

 

to be of “KdV type”. The form of Korteweg-de Vries equation used for this manuscript is 

 

 ∆ ≡ ut + 6uux + uxxx = 0, (1.3) 

 

for which the 6 factor is just conventional and of no great significance. This is a special case in which α = 1, β = 6 and γ = 1 

 

2. Preliminaries 

In this section, we outline preliminary concepts which are useful in the sequel. 
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Local Lie groups 

In Euclidean spaces Rn of x = xi independent variables and Rm of u = uα dependent variables, we consider the transformations [7] 

 

  (2.1) 

 

involving the continuous parameter ϵ which ranges from a neighbourhood  where the functions ϕi and ψα 

differentiable and analytic in the parameter ϵ. 

 

Definition 2.1: The set G of transformations given by (2.1) is a local Lie group if it holds true that 

1. (Closure) Given Tє1, Tє2   ∈ G, for ϵ1, ϵ2 ∈ N J ⊂ N, then  

Tє1 Tє2 = Tє3 ∈ G, ϵ3 = φ(ϵ1, ϵ2) ∈ N . 

2. (Identity) There exists a unique T0 ∈ G if and only if ϵ = 0 such that TєT0 = T0Tє = Tє. 

3. (Inverse) There exists a unique Tє−1 ∈ G for every transformation Tє ∈ G,  

where ϵ ∈ N J ⊂ N and ϵ−1 ∈ N  

such that TєTє−1 = Tє−1 Tє = T0. 

 

Remark 2.2: Associativity of the group G in (2.1) follows from (1). 

Prolongations 

In the system, 

 

  (2.2) 

 

the variables uα are dependent. The partial derivatives u(1) = {uα}, u(2) = {uα }, . . . , u(π) = {uα
i1...iπ}, are of the first, second, . . 

. , up to the πth-orders. 

 

Denoting 

 

  (2.3) 

 

the total differentiation operator with respect to the variables xi and δj
i, the Kronecker delta, we have 

 

  (2.4) 

 

where uα defined in (2.4) are differential variables Ibragimov [11]. 

 

1. Prolonged groups Consider the local Lie group G given by the transformations 

 

  (2.5) 

 

where the symbol  means evaluated on ϵ = 0. 

 

Definition 2.3: The construction of the group G given by (2.5) is an equivalence of the computation of infinitesimal 

transformations 

 

  (2.6) 

 

obtained from (2.1) by a Taylor series expansion of ϕi(xi, uα, ϵ) and ψi(xi, uα, ϵ) in ϵ about ϵ = 0 and keeping only the terms 

linear in ϵ, where 

 

  (2.7) 

 

Remark 2.4: The symbol of infinitesimal transformations, X, is used to write (2.6) as 
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  (2.8) 

 

Where 

 

  (2.9) 

 

is the generator of the group G given by (2.5). 

 

Remark 2.5: To obtain transformed derivatives from (2.1), we use a change of variable formulae 

 

  (2.10) 

 

where  is the total differentiation in the variables . This means that 

 

  (2.11) 

 

If we apply the change of variable formula given in (2.10) on G given by (2.5), we get 

 

  (2.12) 

 

Expansion of (2.12) yields 

 

  (2.13) 

 

The variables u¯α can be written as functions of xi, uα, u(1), that is 

 

   (2.14) 

 

Definition 2.6: The transformations in the space of the variables xi, uα, u(1) given in (2.5) and (2.14) form the first prolongation 

group G [1]. 

 

Definition 2.7: Infinitesimal transformation of the first derivatives is 

 

   (2.15) 

 

Remark 2.8: In terms of infinitesimal transformations, the first prolongation group G [1] is given by (2.6) and (2.15). 

 

2. Prolonged generators 

Definition 2.9: By using the relation given in (2.12) on the first prolongation group G [1] given by Definition 2.6, we obtain [7] 

 

  (2.16) 

 

  (2.17) 

 

and thus 

 

  (2.18)  

 

is the first prolongation formula. 

 

Remark 2.10: Similarly, we get higher order prolongations [11], 

 

  (2.19) 

 

Remark 2.11: The prolonged generators of the prolongations G [1], . . . , G [κ] of the group G are  
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  (2.20) 

 

where X is the group generator given by (2.9). 

 

Group invariants 

Definition 2.12: A function Γ(xi, uα) is called an invariant of the group G of transformations given by (2.1) if 

 

  (2.21) 

 

Theorem 2.13: A function Γ(xi, uα) is an invariant of the group G given by (2.1) if and only if it solves the following first-order 

linear PDE: [7] 

 

  (2.22) 

 

From Theorem (2.13), we have the following result. 

 

Theorem 2.14: The local Lie group G of transformations in Rn given by (2.1) [11] has precisely n - 1 functionally independent 

invariants. One can take, as the basic invariants, the left-hand sides of the first integrals 

 

  (2.23) 

 

of the characteristic equations for (2.22): 

 

  (2.24) 

 

Symmetry groups 

Definition 2.15: The vector field X (2.9) is a Lie point symmetry of the PDE system (2.2) if the determining equations 

 

  (2.25) 

 

are satisfied, where  means evaluated on ∆α = 0 and X[π] is the π-th prolongation of X.  

 

Definition 2.16. The Lie group G is a symmetry group of the PDE system given in (2.2) if the PDE system (2.2) is form-

invariant, that is 

 

  (2.26) 

 

Theorem 2.17: Given the infinitesimal transformations in (2.5), the Lie group G in (2.1) is found by integrating the Lie 

equations 

 

  (2.27) 

 

Lie algebras 

Definition 2.18. A vector space Vr of operators [7] X (2.9) is a Lie algebra if for any two opera- tors, Xi, Xj ∈ Vr, their 

commutator 

 

  (2.28) 

 

is in Vr for all i, j = 1, . . . , r. 

 

Remark 2.19: The commutator satisfies the properties of bilinearity, skew symmetry and the Jacobi identity [7]. 

 

Theorem 2.20: The set of solutions of the determining equation given by (2.25) forms a Lie algebra [7]. 
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Conservation laws [10] 

Fundamental operators 

Let a system of πth-order PDEs be given by (2.2). 

 

Definition 2.21: The Euler-Lagrange operator δ/δuα is 

 

  (2.29) 

 

and the Lie- Ba¨cklund operator in abbreviated form [7] is 

 

  (2.30) 

 

Remark 2.22: The Lie- Ba¨cklund operator (2.30) in its prolonged form is 

 

  (2.31) 

 

Where 

 

  (2.32) 

 

and the Lie characteristic function is 

 

  (2.33) 

 

Remark 2.23: The characteristic form of Lie- Backlund operator (2.31) is 

 

  (2.34) 

 

Remark 2.24: Noether’s Theorem is applicable to systems from variational problems 

 

The method of multipliers  

Definition 2.25: A function Λα xi, uα, u(1), . . . = Λα, is a multiplier of the PDE system given by (2.2) if it satisfies the 

condition that [18] 

 

  (2.35) 

 

where DiTi is a divergence expression. 

 

Definition 2.26: To find the multipliers Λα, one solves the determining equations (2.36) [? ], 

 

  (2.36) 

 

Ibragimov’s conservation theorem 

The technique [10] enables one to construct conserved vectors associated with each Lie point symmetry of the PDE system 

given by (2.2). 

 

Definition 2.27. The adjoint equations of the system given by (2.2) are 

 

  (2.37) 

 

where vα is the new dependent variable. 

 

Definition 2.28: Formal Lagrangian L of the system (2.2) and its adjoint equations (2.37) is [9] 

 

  (2.38) 
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Theorem 2.29: Every infinitesimal symmetry X of the system given by (2.2) leads to conservation laws [11] 

 

  (2.39) 

 

where the conserved vector 

 

  (2.40) 

 

3. Main results 

We compute the Lie point symmetries of Equation (1.3) and use them to linearize the problem and construct exact solutions. 

 

3.1 Lie point symmetries of (1.3) 

The vector field 

 

  (3.1) 

 

is a Lie point symmetry of (1.3) if and only if 

 

  (3.2) 

 

where t and x are two independent variables and u is a dependent variable. X [3] is the third prolongation [8] of (1.3) defined by 

 

  (3.3) 

 

Where 

 

  (3.4) 

 

  (3.5) 

 

  (3.6) 

 

  (3.7) 

 

and the total derivatives Dt and Dx are given by 

 

  (3.8) 

 

  (3.9) 

Applying the definitions of Dt and Dx given above, we obtain the expanded form of the ζs as 

 

  (3.10) 
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From equation (3.2) we get 

 

  (3.11) 

 

After expanding the above equation we obtain 

 

  (3.12) 

 

Substituting the values of ζ1, ζ2 and ζ222 in the above equation yields 

 

  (3.13) 

 

Replacing uxxx by −ut − 6uux in the above equation, we obtain 

 

  (3.14) 

 

Splitting the above determining equation on derivatives of u gives the following over determined system of eight linear partial 

differential equations, namely, 

 

  (3.15) 

  

  (3.16) 

 

  (3.17) 

 

  (3.18) 

  

  (3.19) 

 

  (3.20) 

 

  (3.21) 

 

  (3.22) 

 

Equations (3.15) and (3.16) imply that τ = τ (t). 

 

By rewriting equation (3.20), we obtain and hence 

 

  (3.23) 

 

for some arbitrary function a of t and x. 

 

Since ξu = 0 as in equation (3.17), we have that 
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  (3.24) 

 

Integration of equation (3.18) twice with respect to u yields 

 

  (3.25) 

 

where b and c are arbitrary functions of t and x. 

From the equations (3.19) and (3.24), we deduce that ηux = bx(t, x) = ξxx = 0, which confirms that b = b(t) and hence 

 

  (3.26) 

 

We substitute equation (3.26) into equation (3.22) to have 

 

  (3.27) 

 

Splitting equation (3.27) on powers of u yields, 

 

  (3.28) 

 

  (3.29) 

 

Rewriting equation (3.28) gives which reveals that cxxx(t, x) = 0, and as a consequence of equation (3.29), one 

finds that ct(t, x) = 0, showing that, c = c(x). 

So far we have that, 

 

  (3.30) 

  

  (3.31) 

  

  (3.32) 

 

Substitution of equations (3.31) and (3.32) into equation (3.21) yields 

 

  (3.33) 

 

which after splitting on powers of u gives, 

 

  (3.34) 

 

  (3.35) 

 

From equations (3.34) and (3.35), we get and respectively, so that equation (3.32) be comes, 

 

  (3.36) 

 

Substituting the expression for η from equation (3.36) into equation (3.22) produces 

 

 (3.37) 

 

We then split equation (3.37) on powers of u and x and integrate the resulting equations with respect to t to discover that τ (t) = 

3C1t + C2 and a(t) = 6C3t + C4. 

Finally, 

 

  (3.38) 

  

  (3.39) 
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  (3.40) 

 

The lengthy calculations above prove that Korteweg-de Vries equation (1.3) admits a four-dimensional Lie algebra spanned by 

 

  (3.41) 

 

  (3.42) 

  

  (3.43) 

 

  (3.44) 

 

Remark 3.1: The first two symmetries represent space and time translations respectively while the third represents Galilean 

boost and the fourth represents scaling symmetry. 

 

3.2 Commutator table for the Lie point symmetries 

We evaluate the commutation relations for the symmetry generators. By definition of Lie bracket in section (2.28), for 

example, we have that 

 

  (3.46) 

 

Remark 3.2: The remaining commutation relations are obtained analogously. We present all commutation relations in table 

(1) below. 

 
Table 1: A commutator table for the Lie algebra spanned by the symmetries of Korteweg-de Vries equation 

 

[Xi, Xj] X1 X2 X3 X4 

X1 0 0 0 X1 

X2 0 0 6 X1 3X2 

X3 0 -6X1 0 -2 X3 

X4 -X1 -3X2 2X3 0 

 

3.3 One-parameter groups of transformations 

The corresponding one-parameter group of transformations can be determined by solving the Lie equations as defined in 

section (2.17). Let Tєi be the group of transformations for each Xi, i = 1, 2, 3, 4. We display how to obtain Tєi from Xi by 

finding one-parameter group for the infinitesimal generator X1, namely, 

 

  (3.47) 

 

In particular, we have the Lie equations 

 

  (3.48) 

 

Solving the system (3.48) one obtains, 

 

  (3.49) 

 

and hence the one-parameter group Tє1 corresponding to the operator X1 is 

 

  (3.50) 

 

The other three groups are obtained analogously and we get the following one-parameter groups: 
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  (3.51) 

 

3.4 Symmetry transformations 

We employ the symmetries obtained in section (3.1) to find exact solutions for Korteweg-de Vries equation. In a more general 

sense of symmetry analysis, we can either transform known solutions by the groups or construct group-invariant solutions. By 

the criterion of invariance if u¯ = Γ(t¯, x¯) admits to equation (1.3), then so does 

 

  (3.52) 

 

For example the one-parameter family of solutions generated by the group 

 

  (3.53) 

 

if u¯ = Γ(t¯, x¯)is a solution, then u = Γ(t, x + ϵ1) is also a solution. 

 

The generated solutions include of all the one-parameter groups include: 

 

  (3.54) 

 

3.5 Group-invariant solutions of (1.3) 

Now we compute the group invariant solutions of Korteweg-de Vries equation. 

 

1) Translationally-invariant solutions 

We consider the space translation operator 

 

  (3.55) 
 

Characteristic equations associated with the operator (3.55) are 

 

  (3.56) 

 

which give two invariants J1 = t and J2 = u. Therefore, u = ψ(t) is the group-invariant solution for some arbitrary function ψ. 

Substitution of u = ψ(t) into (1.3) yields 

 

  (3.57) 

 

whose solution is 

 

  (3.58) 

 

for C1 an arbitrary constant. Hence the group-invariant solution of (1.3) under the space translation operator (3.55) is 

 

  (3.59) 

 

2) Stationary solutions 

Consider the time translation operator 

 

  (3.60) 

 

The Lagrangian system associated with the operator (3.60) is 

 

  (3.61) 
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whose invariants are J1 = x and J2 = u. So, u = ψ(x) is the group-invariant solution. Substituting of u = ψ(x) into (1.3) yields 

 

  (3.62) 

 

All the stationary solutions have the form 

 

  (3.63) 

 

for some arbitrary function ψ satisfying the equation (3.62) or equation (3.64) 

 

  (3.64) 

 

obtained from (3.62) by two integrations, for which k and l are constants of integration. The general invariant solution takes the 

form [18] 

 

  (3.65) 

 

where Φ(x) is the Weierstrass elliptic function satisfying the equation, 

 

  (3.66) 

 

For some real roots r1, r2, r3, of the cube polynomial on the right hand side of (3.66), the solutions (3.63) could be written in 

the following forms: [18] 

 

1) If r1 < r2 < r3, then u = u(x), is a limited function and 

 

  (3.67) 

 

a cnoidal wave where dn2(x, s) is the Jacobian elliptic function with modulus s = 

wherein   is the amplitude of a wave, and γ = r1 . 

 

2) If r1 = r2 < r3, then u → r1, uJ, uJJ → 0 when |x| → ∞, and get the solitary wave, 

 

  (3.68) 

 

3) If r1 = r2 = r3, then 

 

  (3.69) 

 

3) Galilean-invariant solutions. 

Consider the Galilean boost operator 

 

  (3.70) 

 

Characteristic equations associated to the operator (3.70) yield two invariants J1 = t and . As a result, the group- 

invariant solution of (1.3) for this case is J2 = φ(J1), for φ an arbitrary function. That is, 

 

  (3.71) 

 

Substitution of the value of u from equation (3.71) into equation (1.3) yields a first order ordinary differential equation 

 whose general solution is  with δ an arbitrary constant of integration. Hence, the group-invariant solution 

under X3 is 

  (3.72) 
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where A = 6δ and t /= 0. 

 

4) Scale-invariant solutions 

Last but not least, we consider the scaling operator 

 

   (3.73)  

 

The associated Lagrangian equations to (3.73) yield two invariants, and J2 = ux2. Thus, the group-invariant solution is 

u(t, x) =  ϕ(λ) , λ = x3 . Generally, scale-invariant solutions take the form 

 

  (3.74) 

 

where for the variable , and ϕ must satisfy equation (3.75) 

 

  (3.75) 

 

3.6 Travelling wave solutions 

We obtain travelling wave solutions of Korteweg-de Vries equation by considering a linear com- bination of the symmetries X1 

and X2, namely, [18] 

 

  (3.76) 

   

The characteristic equations are 

 

  (3.77) 

 

We get two invariants, J1 = u and J2 = x − ct. So the group-invariant solution is 

 

  (3.78) 

 

for some arbitrary function ϕ and c the velocity of the wave. 

Substitution of u into (1.3) yields a third order ordinary differential equation 

 

  (3.79) 

 

Integration of equation (3.79) with respect to ϕ yields 

 

  (3.80) 

 

where we take 0 as a constant of integration. The second integration is done after multiplying equation (3.80) by 2ϕJ and we 

get 

 

  (3.81) 

 

Or 

 

  (3.82) 

 

where ξ = x − ct. 

 

By the change of variable ϕ = c sech2(ξ), we get a one-soliton solution, 

 

  (3.83) 

 

4. Conservation laws 

We derive conservation laws for Korteweg-de Vries equation by using the multiplier method. 
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4.1 The multipliers 

We make use of the Euler-Lagrange operator defined as defined in (2.29) to look for a zeroth order multiplier Λ = Λ(t, x, u). 

The resulting determining equation for computing Λ is 

 

  (4.1) 

 

Expansion of equation (4.1) yields 

  (4.2) 

 

Invoking the total derivatives defined in (3.8) and (3.9) on equation (4.2) results in 

 

  (4.3) 

 

Splitting equation (4.3) on derivatives of u produces an overdetermined system of six partial dif- ferential 

equations, namely, 

 

  (4.4) 

 

  (4.5) 

 

  (4.6) 

 

  (4.7) 

 

  (4.8) 

 

  (4.9) 

 

Note that equations (4.4) and (4.5) are trivially satisfied by equation (4.7). Likewise equation (4.8) admits equation (4.6). 

Integrating equation (4.8) twice with respect to u gives 

 

  (4.10) 

 

for some arbitrary functions a and b of t and x. Substitution of the value of Λ from (4.10) into equation (4.7) yields, 

 

  (4.11) 

 

from which we get that a = a(t), and consequently 

 

  (4.12) 

 

By substituting the value of Λ from equation (4.12) into equation (4.9), we have 

 

  (4.13) 

 

which splits on powers of u as 

 

  (4.14) 

 

  (4.15) 

 

Equation (4.14) implies that 

 

  (4.16) 

 

from which bxxx(t, x) = 0. Thus by equation (4.15), we deduce that bt(t, x) = 0, which in turn verifies that 

 

  (4.17) 
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Upon integration of (4.16) with respect x, we get 

 

  (4.18) 

 

for some arbitary function c. Since b = b(x) as implied by equation (4.17) and a = a(t) as shown in equation (4.11), we must 

have that c = C1 and at(t, x) = C2 for some constants C1 and C2. 

This gives a(t, x) = C2t + C3 and for C3 a constant of integration. 

 

Hence we have, 

 

  (4.19) 

 

which is a linear combination three nontrivial conservation law multipliers 

 

  (4.20) 

 

Remark 4.1. Recall from (2.35) that a multiplier Λ for equation(1.3) has the property that for the density Tt = Tt(t, x, u, ux) and 

flux Tx = Tx(t, x, u, ux, uxx),  

 

  (4.21) 

 

We derive conservation law corresponding to each of the multipliers.’ 

 

1) Conservation law for the multiplier Λ1(t, x, u) = 1. 

Expansion of equation (4.21) gives 

 

  (4.22) 

 

Splitting equation (4.22) on third derivatives of u yields 

 

  (4.23) 

 

  (4.24) 

 

By integrating equation (4.23) with respect to uxx, we deduce that 

 

  (4.25) 

 

for A an arbitrary function of its arguments. 

Substituting the expression of Tx from (4.25) into equation (4.24) we get 

 

  (4.26) 

 

which splits on second derivatives of u, to give 

 

  (4.27) 

 

  (4.28) 

 

  (4.29) 

 

Integrating equations (4.27) and (4.28) with respect to ux manifests that 

 

  (4.30) 

 

  (4.31) 

 

for B an arbitrary function of t, x and u. 

Substituting the expressions of Tt and A from (4.30) and (4.31) respectively, into equation (4.29) gives 
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  (4.32) 

 

which splits on the derivatives of u to yield 

 

  (4.33) 

  

  (4.34) 

 

  (4.35) 

 

By integrating equations (4.33) and (4.34) with respect to u, we find that 

 

  (4.36) 

 

  (4.37) 

 

for C and D arbitrary function of the arguments t and x. 

Substitution of the expressions of A and B into equation (4.35) shows that Dx + Ct = 0. Since C and D contribute to the trivial 

part of the conservation law, we take C = D = 0. We get the conserved vectors 

 

  (4.38) 

 

  (4.39) 

 

from which the conservation law corresponding to the multiplier Λ1 = 1 is given by 

 

  (4.40) 

 

Remark 4.2. The fact that Λ1 = 1 is multiplier is a sufficient evidence that Korteweg-de Vries equation (1.3) is itself a 

conservation law. 

 

2) Conservation law for the multiplier  

Substituting Λ2 into equation (4.21) and expanding yields 

 

  (4.41) 

 

Splitting equation (4.41) on third derivatives of u gives 

 

  (4.42) 

 

  (4.43) 

 

Integration of equation (4.42) with respect to uxx reveals that  
 

  (4.44) 

 

for A an arbitrary function of its arguments. 

Substituting the expression of Tx from (4.44) into equation (4.43) we have 

 

  (4.45) 

 

Splitting the equation (4.46) on second derivatives of u gives 

 

  (4.47) 
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  (4.48) 

 

  (4.49) 

 

Integration of equations (4.47) and (4.48) with respect to ux yields 

 

  (4.50) 

 

  (4.51) 

 

where α and δ are arbitrary functions of t, x and u. Substituting the values of Tt and A from (4.50) and (4.51) respectively into 

equation (4.49) gives 

 

  (4.52) 

 

The equation (4.52) splits on first derivatives of u to give 

 

  (4.53) 

 

  (4.54) 

 

  (4.55) 

 

By integrating equations (4.53) and (4.54) with respect to u , we have that 

 

  (4.56) 

 

  (4.57) 

 

where ρ and γ are arbitrary functions of their arguments. Substituting the values of A and δ into equation (4.55) gives γt + ρx = 

0. We take note that γ and ρ contribute to the trivial part of the conservation law thus we take them to be zero to give the 

conserved vectors 

 

  (4.58) 

 

  (4.59) 

 

Hence the conservation law corresponding to the multiplier Λ2 = tu − x is given by 

 

  (4.60) 

 

3) Conservation law for the multiplier Λ3(t, x, u) = u. 

Substituting Λ3 into equation (4.21) and expanding, the result is 

 

  (4.61) 

 

We then split equation (4.61) on third derivatives of u, to obtain 

 

  (4.62) 

 

  (4.63) 

 

Integration of equation (4.62) with respect to uxx yields 
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  (4.64) 

 

where A is an arbitrary function of its arguments. 

Substituting the expression of Tx from (4.64) into equation (4.63) we have 

 

  (4.65) 

 

By splitting the above equation (4.65) on second derivatives of u, we find 

 

  (4.66) 

 

  (4.67) 

 

  (4.68) 

 

By integrating equations (4.66) and (4.67) with respect to ux, one finds that 

  

  (4.69) 

 

  (4.70) 

 

for arbitrary functions θ and k. 

Substitution of the expressions of Tt and A from equations (4.69) and (4.70) respectively into equation (4.68), we get 

 

  (4.71) 

 

which splits on second derivatives of u as, 

 

  (4.72) 

 

  (4.73) 

 

  (4.74) 

 

We integrate equations (4.72) and (4.73) with respect to u and obtain 

  

  (4.75) 

 

  (4.76) 

 

for some arbitrary functions c and a of t and x. 

Lastly, we substitute the values of θ and A into equation (4.74) which gives θt + Ax = 0. We take note that a and c contribute to 

the trivial part of the conservation law thus we take them to be zero and get the conserved vectors 

 

  (4.77) 

 

  (4.78) 

 

Hence the conservation law corresponding to the multiplier Λ3 = u is given by 

 

  (4.79) 

 

4. Conclusion 

In this paper, we have employed symmetry analysis to study a kdv type equation. A four-dimensional Lie algebra of 

symmetries was found for the nonlinear KdV equation.Our Lie algebra is generated by space and time translations, Galilean 

boost and scaling symmetries where the scaling symme- try acts on three variables. Associated to each symmetry, we obtained 

symmetry reductions that gave six nontrivial solutions for the kdv equation. All the solutions describe the various states of any 
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system that can be modeled by a kdv type equation. The obtained solutions can be used as a benchmark against numerical 

simulations. In future, we will construct more conservation laws by Ibragimov approach and generalize a study of such 

problems. 
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