Int. j. adv. multidisc. res. stud. 2022; 2(6):485-486

International Journal of Advanced Multidisciplinary Research and Studies

ISSN: 2583-049X

Received: 01-11-2022 Accepted: 11-11-2022

Letter to the Editor

The spectrum of neuro-COVID is broader than is often propagated

¹ Josef Finsterer, ² Fulvio A Scorza, ³ Antonio-Carlos G Almeida

¹Neurology & Neurophysiology Center, Vienna, Austria

² Disciplina de Neurociência. Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM). São Paulo, Brasil

> ³ Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima." Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP). São Paulo, Brasil

Corresponding Author: Josef Finsterer

We read with interest the review article by Brola et al. about the neurological side effects of SARS-CoV-2 infections [1]. The authors included and discussed the most relevant neurological complications after an infection with SARS-CoV-2 which were reported in the literature ^[1]. It was concluded that neurological manifestations of SARS-CoV-2 infections can be the initial clinical manifestation of the disease, can even dominate the clinical presentation in the later disease courses, and can be the dominant abnormality in long-COVID syndrome^[1]. The study is appealing but raises concerns that should be discussed.

The main imitation of the study is that a number of neurological complications of SARS-CoV-2 infections were not mentioned without explaining why not the entire spectrum of neurological SARS-CoV-2 associated disease was included ^[1]. Central nervous system (CNS) diseases that were not mentioned or discussed in the review include subarachnoid bleeding ^[2]. opsoclonus myoclonus syndrome ^[3], acute, hemorrhagic, necrotising encephalopathy (AHNE) ^[4], acute, hemorrhagic, leucoencephalitis (AHLE)^[5], reversible cerebral vasoconstriction syndrome (RCVS)^[6], pituitary apoplexy^[7], Tolosa-Hunt syndrome (THS)^[8], cerebellitis, brainstem Bickerstaff encephalitis (BBE)^[9], rhomb-encephalitis ^[10], limbic encephalitis elmoulhib^[11], cerebral vasculitis^[12], neuromyelitis optic spectrum (NMO) spectrum disorders^[13], and microbleeds^[14]. Peripheral nervous system (PNS) disorders following a SARS-CoV2 infection and not mentioned in the review are immune plexitis, also known as Parsonage Turner syndrome (PTS)^[15], small fiber neuropathy^[16], dermatomyositis^[17], myositis^[18], and rhabdomyolysis ^[19]. SARS-CoV-2 may not only deteriorate a pre-existing neurological condition, such as myasthenia or multiple sclerosis, but may also trigger new onset myasthenia or multiple sclerosis ^[20].

A further limitation is that the term "encephalopathy" was commonly used without providing a definition of this term. We should know whether the authors mean epilepsy, cognitive impairment, disorientation, or others with this term.

Missing is a discussion of SARS-CoV_2 associated immune, thrombotic thrombocytopenia (ITTP) as the cause of venous sinus thrombosis (VST). There is also no mentioning of cardiac involvement in a SARS-CoV-2 infection which can secondary cause embolic stroke due to thrombus formation in the atria, ventricles or peripheral veins in case of a foramen ovale.

Overall, the interesting study has limitations that call the results and their interpretation into question. Addressing these limitations could further strengthen and reinforce the statement of the study. A review about the neurological complications of SARS-CoV-2 infections should be compulsory and comprehensive to demonstrate the broad spectrum of complications and to guide clinicians on how to approach the diagnostic and therapeutic management of these complications.

Declarations

Funding sources: No funding was received.

Conflicts of interest: None.

Acknowledgement: None.

Ethics approval: Was in accordance with ethical guidelines. The study was approved by the institutional review board.

International Journal of Advanced Multidisciplinary Research and Studies

Consent to participate: Was obtained from the patient.

Consent for publication: Was obtained from the patient.

Availability of data: All data are available from the corresponding author.

Code availability: Not applicable.

Author contribution: JF: design, literature search, discussion, first draft, critical comments, final approval, FS and A-CA: literature search, discussion, critical comments, final approval.

Keywords: COVID-19, SARS-CoV-2, Stroke, Vasculitis, Neuro-Covid

References

- Brola W, Wilski M. Neurological consequences of COVID-19. Pharmacol Rep, 2022. Doi: 10.1007/s43440-022-00424-6.
- Scheer M, Harder A, Wagner S, Ibe R, Prell J, Scheller C, Strauss C, Simmermacher S. Case report of a fulminant non-aneurysmal convexity subarachnoid hemorrhage after COVID-19. Interdiscip Neurosurg. 2022; 27:101437. Doi: 10.1016/j.inat.2021.101437.
- 3. Finsterer J, Scorza F. Opsoclonus myoclonus ataxia (Kinsbourne, dancing eye-dancing feet) syndrome due to SARS-CoV-2. Neuro-Ophthalmol, 2022. (In press)
- Alqahtani A, Alaklabi A, Kristjansson S, Alharthi H, Aldhilan S, Alam H. Acute necrotic hemorrhagic leukoencephalitis related to COVID-19: A report of 2 cases. Radiol Case Rep. 2021; 16(9):2393-2398. Doi: 10.1016/j.radcr.2021.05.072.
- Varadan B, Shankar A, Rajakumar A, Subramanian S, Sathya AC, Hakeem AR, Kalyanasundaram S. Acute hemorrhagic leukoencephalitis in a COVID-19 patient-a case report with literature review. Neuroradiology. 2021; 63(5):653-661. Doi: 10.1007/s00234-021-02667-1.
- Ray S, Kamath VV, Raju PA, Kn RNS. Fulminant Reversible Cerebral Vasoconstriction Syndrome in Breakthrough COVID 19 Infection. J Stroke Cerebrovasc Dis. 2022; 31(2):106238. Doi: 10.1016/j.jstrokecerebrovasdis.2021.106238.
- Balmain J, Jarebi M, Al-Salameh A, Toussaint P, Timmerman M, Chenin L, *et al.* Pituitary apoplexy in the aftermath of a SARS-CoV-2 infection: A case series from Amiens University Hospital. Eur J Endocrinol. 2022; 187(3):K19-K25. Doi: 10.1530/EJE-22-0056.
- Hajjar D, Sultan D, Khalaf A, Hesso H, Kayyali A. A case of total ophthalmoplegia associated with a COVID-19 infection: Case report. Oxf Med Case Reports. 2022; 2022(5):omac050. Doi: 10.1093/omcr/omac050.
- 9. Kimura M, Hashiguchi S, Tanaka K, Hagiwara M, Takahashi K, Miyaji Y, *et al.* Case Report: Takotsubo Cardiomyopathy in Bickerstaff Brainstem Encephalitis Triggered by COVID-19. Front Neurol. 2021; 12:822247. Doi: 10.3389/fneur.2021.822247.
- 10. Samal P, Praharaj HN, Mishra B, Sarangi S. Acute Necrotizing Rhombencephalitis and Disseminated Thrombosis After SARS-CoV-2 Infection. Infect Dis

Clin Pract (Baltim Md). 2021; 29(4):e260-e261. Doi: 10.1097/IPC.00000000001029.

- 11. Elmouhib A, Benramdane H, Ahsayen FZ, El Haddad IA, El Ghalet A, Laaribi I, *et al.* A case of limbic encephalitis associated with severely COVID-19 infection. Ann Med Surg (Lond). 2022; 74:103274. Doi: 10.1016/j.amsu.2022.103274.
- Lersy F, Kremer S. Meningeal inflammation and cerebral vasculitis during acute COVID-19 with spontaneous regression. Intensive Care Med. 2022; 48(2):233-235. Doi: 10.1007/s00134-021-06592-y.
- Batum M, Kisabay Ak A, Mavioğlu H. Covid-19 infection-induced neuromyelitis optica: A case report. Int J Neurosci. 2022; 132(10):999-1004. Doi: 10.1080/00207454.2020.1860036.
- 14. Napolitano A, Arrigoni A, Caroli A, Cava M, Remuzzi A, Longhi LG, *et al.* Cerebral Microbleeds Assessment and Quantification in COVID-19 Patients with Neurological Manifestations. Front Neurol. 2022; 13:884449. Doi: 10.3389/fneur.2022.884449.
- Fortanier E, Le Corroller T, Hocquart M, Delmont E, Attarian S. Shoulder palsy following SARS-CoV-2 infection: Two cases of typical Parsonage-Turner syndrome. Eur J Neurol. 2022; 29(8):2548-2550. Doi: 10.1111/ene.15358.
- 16. Barros A, Queiruga-Piñeiro J, Lozano-Sanroma J, Alcalde I, Gallar J, Fernández-Vega Cueto L, *et al.* Small fiber neuropathy in the cornea of Covid-19 patients associated with the generation of ocular surface disease. Ocul Surf. 2022; 23:40-48. Doi: 10.1016/j.jtos.2021.10.010.
- 17. Anderle K, Machold K, Kiener HP, Bormann D, Hoetzenecker K, Geleff S, *et al.* COVID-19 as a putative trigger of anti-MDA5-associated dermatomyositis with acute respiratory distress syndrome (ARDS) requiring lung transplantation: A case report. BMC Rheumatol. 2022; 6(1):42. Doi: 10.1186/s41927-022-00271-1.
- Aschman T, Goebel HH, Stenzel WP. Unconvincing Evidence of SARS-CoV-2-Associated Myositis in Autopsied Muscles-Reply. JAMA Neurol. 2022; 79(1):92-93. Doi: 10.1001/jamaneurol.2021.4339.
- Kermond R, Cavazzoni E, Kilo T, Britton PN, Durkan A. COVID-19-associated rhabdomyolysis in a paediatric patient with sickle cell trait. J Paediatr Child Health. 2022; 58(9):1664-1665. Doi: 10.1111/jpc.15867.
- Sriwastava S, Tandon M, Kataria S, Daimee M, Sultan S. New onset of ocular myasthenia gravis in a patient with COVID-19: A novel case report and literature review. J Neurol. 2021; 268(8):2690-2696. Doi: 10.1007/s00415-020-10263-1.