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Abstract 

In operator theory q-calculus is an active area of research in 

last few years. Several new q-operators were introduced and 

their approximation behavior was discussed. In the present 

paper, we study the Stancu type generalization of Beta-

Szasz type operators for their q-analogues. We obtain 

moments and convergence results in terms of higher order 

modulus of continuity. 
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1. Introduction 

Many researchers introduced several q-operators and discussed their approximation properties. Very first in the year 1987, A. 

Lupas [16] gave the first q-analogue of classical Bernstein Polynomials. After that Phillips [22] introduced another important q-

analogue of Bernstein polynomials. Many researchers worked in this direction and proposed various q-operators and studied 

their different properties e.g. [9, 10, 11, 15, 17, 18, 19, 20] and [21] etc. For q-discrete operators the convergence estimates were also 

studied by [1, 2] and [3]. Atakut - Buyukyazici [5, 6] studied the Stancu variants of several well-known operators and estimated 

some direct results. Actually, the Stancu variant is based on two parameters and it generalizes the original operator. Motivated 

by the recent research on Stancu type operators, we introduced the Stancu type generalization of the Beta-Szasz operators. 

 

For  and , we propose the q-Beta-Szasz-Stancu operators as 

 

(1)   

 

where  and  are Beta and Szasz basis functions defined as 

 

 .  

 

And  

 

As a special case when and q = 1, the above operators reduce to the Beta-Szasz operators introduced by Gupta and 

Srivastava [12]. Aral, Gupta and Agrawal [4] published a book which contains many important results on applications of q-

Calculus. For the study on this paper, some notations of q-calculus are described below. 
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According to [14], there are two q-analogues of exponential function  

 

  
 

And  

  
 

Where  

 

The q-Jackson integrals and q-improper integrals are defined as 

 

  
 

  
 

The two q-Gamma functions are defined as 

 

  
 

  
 

For every A, x>0, we can get 

 

  
 

  
 

For any n>0 

  

  
 

and 

 

  
 

In the present paper, we obtain the moments of the q-Beta-Szasz-Stancu operators and es- 

tallish some direct results which include the error estimation in terms of modulus of continuity 

and the weighted approximation for above said operators. 
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2. Moment Estimations 

This section deals with certain lemmas 

Lemma 1: [13] For above operator, for  and 0<q<1, following equalities hold 

(1)  

(2)  

 

(3)  

 

Lemma 2: For  and  we have  

 

  
 

  
 

  
 

Proof: By Lemma 1, it is clear that 

 

  
 

Further, we have 

 

  
 

  
 

  
 

We have  
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Lemma 3: For and we obtain the central moments as follows 

 

  
 

  
 

  
 

 

3. Convergence Estimates 

Definition 1. By  we denote the space of real valued continuous bounded functions 

f on the interval , the norm  on the space  is given by 

 

 

.)(sup
0

xff
x 

=
 

 

Definition 2: The Peetre's K-functional is defined by 

 

  
 

Where  Following [8], there exists a positive constant M>0 such that  where 

the second order modulus of smoothness is given by 

  
 

Definition 3: For  the usual modulus of continuity is given by 

   

  
 

Theorem 1: Let  and  then for all  and ; there 

exists an absolute constant M > 0 such that 

 

  
 

Where  

Proof: Introducing the auxiliary operators  as 

(1)   The operators  are linear and preserve 

the linear functions: 

 

(2)  

 

Let  Using Taylor’s expansion  

 

  
 

and (3), we get 
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Hence by (2), we have 

 

  
 

  
 

(4)  and by (2), we have 

 

(5)  

 

According to results (2), (4) and (5), we get 

 

  
 

  
 

 . 

 

Therefore, taking infimum on the right-hand side over all , we get  

 

  
 

Using the property of K-functional 

 

  
 

This completes the proof of the theorem. 

 

Definition 4: Let  be the set of all functions f defined on  satisfying the condition . 

Where  is a constant depending only on f. By  we denote the subspace of all continuous functions belonging to 

. Also let  be the subspace of all functions  for which  is finite. The norm on 
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We denote the modulus of continuity of f on closed interval [0; a]; a > 0 as by 

 

 

).()(supsup),(
),0[,

xftff
txxt

a −=
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We observe that for function  the modulus of continuity ),(  fa tends to zero. 

 

Theorem 2: Let  satisfies  and let  as  for each 

  

 , we have 

 

  
 

Proof: Following [9], we observe that it is sufficient to verify the following three conditions 

 

(6)  

 

Since  hold for v=0 

 

  
 

Thus  

 

  
 

  
 

  
 

which implies that  

 

Hence theorem is proved.  
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