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Abstract 

Brain-Computer Interface (BCI) is an advanced, 

interdisciplinary and active research area based on 

neuroscience, signal processing, biomedical sensors, 

hardware, and more. It is a type of communication system 

that allows humans to communicate with their surroundings 

using control signals generated by brain wave activity 

without the involvement of peripheral nerves or muscles. 

Over the past decades, several pioneering research studies 

have been conducted on the suitability of different signal 

acquisition techniques for BCI. However, a comprehensive 

review that fully covers this area has not yet been 

conducted. Therefore, this study provides a comprehensive 

overview including a comparison of different techniques for 

capturing the signal of BCI and briefly describes the 

advantages and disadvantages of each technique. This paper 

also presents optimum locations which can be used for 

acquiring EEG signals from the brain for using the EEG 

technique being the simplest, safest and most economic 

option. 
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Introduction 

BCI has always been an attractive area for researchers. More recently, it has become an interesting area of scientific 

investigation and a potential means of demonstrating a direct link between the brain and technology. It is also one of the fastest 

growing areas of research. Many scientists have tried and applied various methods of communication between humans and 

computers using BCI in various forms. However, from a simple concept in the early days of digital technology, today it has 

evolved into highly complex signal detection, recording and analysis techniques. In 1929, Hans Berger [1] recorded for the first 

time an electroencephalogram (EEG) [2] showing the electrical activity of the brain measured through the scalp of the human 

brain. The author tried it on a boy with a brain tumour. Since then, EEG signals have been used clinically to identify brain 

disorders. The concept of combining the brain and technology has always been of interest to the scientists, and recent advances 

in neurology and technology have made it a reality, paving the way for repairing and possibly enhancing human physical and 

mental capabilities. The sector flourishing the most based on BCI is considered the medical application sector. Cochlear 

implants [3] for the deaf and deep brain stimulation for Parkinson’s illness are examples of medical uses becoming more 

prevalent. In addition to these medical applications, security, lie detection, alertness monitoring, telepresence, gaming, 

education, art, and human enhancement are just a few uses for brain–computer interfaces (BCIs), also known as brain–machine 

interfaces or BMIs [4]. 

This paper entails the applications of BCI while primarily focusing on its biomedical applications. Various uses of BCI are 

further explained briefly. Recognising signal acquisition as the most important step in BCI, different techniques are evaluated 

in light of their respective pros and cons which are further evaluated to classify the techniques in terms of the temporal 

resolutions, noise, cost effectiveness and safety limitations. The comparison provided by the end of the paper can be used as a 

basic reference for selection of techniques for a particular application in future. 

 

Discussion 

Applications of BCI 

A BCI can be used for a variety of purposes, and the application dictates the design of the BCI. Robotics and advanced 

mechatronics have played a significant role in the development of assistive technologies to help people overcome a large range 

of disabilities. BCI's immediate purpose is to offer control and power to persons with extreme disabilities or people with partial 

or complete body paralysis. Various neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem 

stroke, or spinal cord injury can be the cause of these disabilities. Such an interface would increase their quality of life and 
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would minimize the expense of intensive care at the same 

time. According to Nijholt [5], BCI-based applications offer 

two eases of use. You can specify whether one can monitor 

or observe the other. Most command applications focus on 

manipulating brain impulses using electrodes to control 

external devices. Observational applications, on the other 

hand, focus on recognizing the subject's mental and 

emotional state in order to act appropriately in response to 

the environment. Some applications of BCI [6] based on 

usability are described below: 

 

Biomedical Applications  

The majority of BCI integration and research has focused on 

medical applications, and many BCIs aim to replace or 

restore CNS function lost due to disease or accident. Other 

BCIs are narrower. In diagnostic applications, BCIs are also 

used for biological and emotional purposes, in CNS disease 

and post-traumatic therapy, and in motor rehabilitation. 

Biomedical technologies and applications can minimize the 

longevity of disease and empower people with reduced 

mobility to care, protect and support rehabilitation. The need 

to develop precise techniques that can process abnormal 

brain responses that can occur due to diseases such as stroke 

is a key challenge in developing such platforms. [7]. The 

following subsections go through each of these applications 

in further detail. 

 

Substitute to CNS 

This replacement means that CNS function lost due to 

diseases such as stroke or traumatic paralysis or spinal cord 

injury can be repaired or replaced. In addition, individuals 

with such diseases suffer from altered brain function and 

developing such technology can be difficult. Myoelectrics, 

known as motor action potentials, which capture electrical 

impulses in muscles, are currently used in several robotic 

prostheses. Bousseta, R. et al. [8] provided a cognitive task 

that allowed movement in four directions, left, right, up and 

down in an experimental technique that used mental 

imagery to control the movement of a prosthetic robotic 

arm. 

 

Assessment and Diagnosis 

Using BCI in a clinical setting also aids in evaluation and 

diagnosis. Perales [9] proposed a BCI to assess attention 

during play in adolescents with cerebral palsy. Another 

study [10] explored using BCI to capture EEG characteristics 

as a tool for diagnosing schizophrenia. There are various 

diagnostic methods such as detection of brain tumors [11], 

detection of breast cancer [12], Parkinson's disease [13] etc. 

Diagnosis of multiple diseases in the child is possible, 

including epilepsy, neurodegenerative diseases, movement 

disorders, inattentiveness, or various types of ADHD [14]. 

Evaluation and diagnostic techniques are critical to patient 

health. How they work needs to be fine-tuned to ensure they 

are secure, acceptable, and accurate to industry standards. 

 

Therapy and Rehabilitation 

BCI is now being used in therapeutic applications in 

addition to neurological applications and prosthetics. 

Among many applications, motor rehabilitation after stroke 

has shown promising results with BCIs [15, 16, 17]. Stroke 

causes long-term disability in the human body and prevents 

movement or vigorous activity of any kind due to impaired 

blood flow. BCIs can support the patients and treat 

neurological disorders such as Parkinson's disease (PD), 

cluster headaches, and tinnitus. Deep brain stimulation 

(DBS) is an established treatment for Parkinson's disease 

because it provides electrical stimulation to specific areas of 

the brain that cause symptoms [18]. Some stimulation BCI 

devices are used to treat migraine attacks and cluster 

headaches. Likewise, a CNS disorder known as tinnitus is 

also being developed to provide treatments by identifying 

the brain patterns altered by this disease [19]. Finally, 

treatment of auditory hallucinations (AVHs), best known as 

schizophrenia, is an option alongside diagnosis. 

 

Affective Computing 

A user's emotions and state of mind are observed in 

affective computing BCI, and the environment can be 

manipulated to enhance or modify that emotion. Ehrlich, S. 

et al. [22] created a closed-loop system in which music is 

generated and played based on the listener's emotional state. 

The connection between human emotional states and 

sensations can be studied using devices associated with the 

BCI system. Patients with neurological disorders can also 

benefit from affective computing to communicate their 

feelings to others [23]. 

 

Structure of BCI System 

The BCI system works in a closed loop system. A certain 

amount of feedback is returned for each user action. For 

example, movements of an imaginary hand can lead to 

commands to move a robotic arm. This simple arm 

movement requires a lot of process. In this regard, BCI is 

characterized as a tool that measures brain or central 

nervous system activity and transforms these signals into 

artificial output. As an artificial intelligence system BCI can 

identify a certain set of patterns in brain signals and can 

control the actuator after four consecutive phases. These 

phases include: 

1. Signal acquisition 

2. Pre-processing & Feature Extraction  

3. Classification  

4. Control interface 

The stage of signal acquisition collects the signals from the 

brain and can also minimize noise and process artifacts. The 

pre-processing stage prepares the signals for further 

processing in a suitable manner. The feature extraction stage 

recognizes discriminative information in the recorded brain 

signals. The stage of classification classifies the signals 

considering the vectors of the function. The choice of a good 

classifier is necessary to achieve efficient pattern 

recognition in order to decipher the intentions of the user. 

Finally, the control interface step converts the classified 

signals into practical commands, for an actuator like a 

wheelchair, walker, or a computer. This structure of BCI is 

illustrated in figure 1. 

 

Signal Acquisition Techniques 

The human brain generates electrical signals known as EEG 

signals. These signals can be acquired through invasive and 

non-invasive techniques. While choosing between the 

invasive and non-invasive methods of signal acquisition, the 

resolution needed for proper translation and the feasibility of 

obtaining the signals are considered. The basic architecture 

of the BCI system was explained in the preceding section. It 

prompts us to investigate the classification of BCI system. 

Based upon various techniques, BCI system is classified as 
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follows. 

 

Dependability 

BCI can be categorized as dependent or non-dependent. 

Dependent BCI requires a specific type of motor control by 

the operator or healthy subject like eye (gaze) control. An 

independent BCI, on the other hand, does not allow 

individuals to exercise any form of motor control. This type 

of BCI is suitable for stroke or severely disabled patients. 

 

Invasiveness 

BCIs are also classified into three types according to their 

invasiveness: invasive, partially invasive, and non-invasive. 

Invasive BCIs are the most accurate because they are 

implanted directly into the cerebral cortex and allow 

researchers to monitor the activity of each neuron. There are 

two types of invasive BCIs: single-unit BCI, which detects 

signals from one brain cell location, and multi-unit BCI, 

which detects signals from multiple regions. Semi-invasive 

BCI uses an electrocorticogram (ECoG), a type of signalling 

platform in which electrodes can be placed at accessible 

edges of the brain to capture electrical impulses emanating 

from the cerebral cortex. This procedure is less invasive, but 

still requires a surgical opening in the brain. Non-invasive 

BCI uses external sensing rather than brain implants. 

Electroencephalography (EEG), magnetoencephalography 

(MEG), positron emission tomography (PET), functional 

magnetic resonance imaging (fMRI), and functional near-

infrared spectroscopy (fNIRS) are all used for brain 

analysis. EEG is most commonly used due to the low cost 

and portability of the equipment. 

 

Autonomy 

BCI works synchronously or asynchronously and allows for 

time-sensitive or time-independent interactions between 

users and systems. A system is said to be synchronous BCI 

if the interactions are performed within a specified time in 

response to cues provided by the system. Asynchronous BCI 

allows subjects to engage with the system by creating 

mental tasks at specific points in time. A synchronous BCI 

is not as user-friendly as an asynchronous BCI. However, 

designing it is much easier than developing an asynchronous 

BCI. This classification is illustrated in figure 2. 

 

Invasive Technique 

In this technique, sensors are placed inside the human brain 

through surgery preferably in the motor cortex. The motor 

cortex is the area of the brain in which voluntary movements 

are organized, regulated, and carried out. Invasive BCIs 

seem to be the most accurate even though they are 

implanted directly into the cortex as allows to track every 

neuron’s action. Invasive BCI has two separate units. The 

first one detects signals from a single location of brain 

whereas the second unit detects the signals from a different 

location [24]. This is a relatively expensive technique and 

while it involves complex technical details, it can be life 

threatening for the user. 

  

Non-Invasive Technique 

Non-invasive technologies and interfaces have been 

employed in a considerably more comprehensive range of 

applications. Non-invasive applications and technologies are 

becoming increasingly popular in recent years since they do 

not require any brain surgery. The non-invasive technique 

involves the placement of electrodes through a headset on 

the human skull. Based on the application, 1 to 256 

electrodes can be placed on the headset. Before the 

placement of electrodes, the surface of the skull is prepared 

by applying a gel or paste. This is done to reduce the contact 

impedance between the two surfaces. The non-invasive 

techniques are preferred over invasive techniques as they are 

fast, cheap, and involve lower health risks. The non-invasive 

techniques include Electroencephalography (EEG), Positron 

Emission Tomography (PET), Magnetoencephalography 

(MEG), functional Near IR Spectroscopy (fNIRS), and 

functional Magnetic Resonance Imaging (fMRI). 

 

Electroencephalography (EEG) 

EEG monitors electrical activity in the scalp produced by 

neurons in the brain. Multiple electrodes implanted directly 

into the scalp, primarily the cortex, are often used to rapidly 

record these electrical activities. Due to its excellent 

temporal resolution, ease of use, safety and affordability, 

EEG is the most widely used technique for capturing brain 

activity. Active and passive electrodes are two types of 

electrodes that can be used. Active electrodes typically have 

a built-in amplifier, whereas passive electrodes require an 

external amplifier to amplify the detected signal. The main 

purpose of implementing a built-in or external amplifier is to 

reduce the effects of background noise and other interfering 

signals caused by cable movement. One problem with EEG 

is the need to use gels or saline to reduce the resistance of 

skin electrode contacts. Additionally, the signal quality is 

poor and varies with background noise. The International 

10-20 system of electrodes placement [25] is commonly used 

to implant electrodes on the scalp surface for recording 

purposes. Electrical activity across different frequency 

bands is commonly used to describe EEG. 

 

Positron Emission Tomography (PET) 

PET (positron emission tomography) is an advanced 

imaging tool for examining brain activity in real time. This 

allows non-invasive measurements of cerebral blood flow, 

metabolism, and receptor binding in the brain. PET has so 

far been used only for research due to its relatively high cost 

and the complexity of the associated infrastructure such as 

cyclotrons, PET scanners and radiochemistry laboratories. 

PET has been widely used in clinical neurology in recent 

years due to advances in technology and the prevalence of 

PET scanners to improve our understanding of disease 

etiology, aid in diagnosis, and monitor disease progression 

and response to therapy [26]. PET drugs such as radiolabelled 

choline, fluciclovine (18F-FACBC), and compounds 

targeting the prostate-specific membrane antigen are 

currently being investigated to improve diagnostic 

performance in non-invasive localization of prostate cancer 

[27]. 

 

Manetoencephalography (MEG) 

The magnetic field produced by the flow of current in the 

brain is measured with MEG (Magnetoencephalography). 

Magnetic fields have better spatial resolution than EEG 

because they move through the skull much more easily than 

electric fields. Functional neuroimaging techniques are used 

to measure and assess the brain's magnetic fields. MEG is of 

increasing importance, especially for patients with epilepsy 

and brain tumours. It helps identify brain regions with 

average function in people with epilepsy, tumours, or other 
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mass lesions. Because MEG works with magnetic waves 

rather than radio waves, it can add additional information to 

EEG. MEG can also acquire signals with high temporal and 

spatial resolution. Therefore, to detect brain activity that 

produces small magnetic fields, the scanner must be brought 

close to the surface of the brain. 

  

Functional Near Infrared Spectroscopy (fNIRS) 

The infrared radiation is projected into the brain using 

fNIRS equipment to monitor improvements in specific 

wavelengths as the light is reflected. fNIRS often detects 

changes in regional blood volume and oxygenation. When a 

particular area of the brain works, it requires additional 

oxygen, which is given to the neurons via capillary red 

blood cells—the increased blood flow in the brain areas that 

would be most active at a given time. As a result, images 

with a high spatial resolution (1 cm) but lower temporal 

resolution (>2–5 s) could be obtained, comparable with 

standard functional magnetic resonance imaging. 

 

Functional Magnetic Resonance Imaging (fMRI) 

Non-invasive functional magnetic resonance imaging 

(fMRI) is used to assess changes in blood oxygen levels 

during brain activity. FMRI has excellent spatial resolution, 

making it ideal for identifying active regions of the brain [28]. 

The temporal resolution of fMRI is relatively low, ranging 

from 1 to 2 seconds [29]. Also, the resolution is low when it 

comes to head movements, which can lead to artifacts. It is a 

radiation-free, non-invasive and safe technique that is easy 

to use and has excellent spatial and temporal resolution. 

Haemoglobin in the brain's capillaries carries oxygen to 

neurons. Blood flow increases due to the increased need for 

oxygen. When haemoglobin is oxygenated, its magnetic 

properties change. An MRI machine has a cylindrical tube 

with powerful electromagnets and can determine which 

areas of the brain are activated based on these differences. 

There is also a special application or software called 

diffusion MRI that takes advantage of the diffusion of water 

molecules to generate images from data or results. 

Diffusion-weighted and diffusion tensor imaging 

(DWI/DTI) facilitate this study of brain microarchitecture. 

Diffusion-weighted magnetic resonance imaging (DWI or 

DW-MRI) reproduces image changes in response to 

deviations in the diffusivity of water particles in the brain. 

Diffusion maps the stochastic thermal mobility of particles. 

Diffusion in the brain is defined by several factors, 

including the representation of the particles under study, 

temperature, and the microenvironmental structure in which 

diffusion occurs [30]. Diffusion tensor imaging (DTI) 

examines the three-dimensional shape of diffusion, also 

called the diffusion tensor. This is a powerful MRI modality 

that produces knowledge about the directionality of water 

motion within voxels. It exhibits non-invasive microscopic 

tissue features that surpass the capabilities of other imaging 

modalities [31]. 

 

Non-Invasive Techniques Comparison 

A comparison of various non-invasive techniques for signal 

acquisition is drawn below: 

 
Table 1: Comparison of Non-Invasive BCI Techniques. 

 

Non-invasive BCI Techniques Advantages Disadvantages 

EEG 

▪ High temporal resolution 

▪ Low cost 

▪ No safety limitations 

▪ High noise 

▪ Average spatial resolution 

fNIRS 
▪ Good temporal resolution 

▪ Fast 

▪ Limited temporal resolution 

▪ Expensive 

▪ Complex design 

MEG ▪ Much deeper imaging 
▪ Complex design 

▪ Bulky Expensive 

fMRI ▪ High spatial resolution 
▪ Low temporal resolution 

▪ Expensive 

PET ▪ High spatial resolution 

▪ High cost 

▪ Low temporal resolution 

▪ Safety limitations 

 

Brain Locations for Obtaining EEG Signals 

EEG is the most commonly used approach for BCI signal 

acquisition due to its high temporal resolution, low cost, and 

ability to record changes in the behaviour of signal within a 

few milliseconds. One of the biggest advantages of EEG is 

that it captures the cognitive process in the period in which 

cognition happens.The cerebral cortex of the human brain is 

divided into four lobes; temporal, frontal, parietal, and 

occipital. Different brain regions are capable of performing 

different functions and controlling different actions. The 

EEG signal is often a combination of many base frequencies 

that are known to describe the cognitive, affective, or 

attentional states. These frequencies are based on particular 

ranges or bands. The EEG signal frequency range is 0–100 

Hz, which is divided into five classes according to their 

frequency (Delta, Theta, Alpha, Beta, and Gamma). 

Delta band (1 – 4 Hz) 

Theta band (4 – 8 Hz) 

Alpha band (8 – 12 Hz) 

Beta band (13 – 25 Hz)  

Gamma band (> 25 Hz) 

These frequencies are illustrated in figure 3. Moreover, 

different regions of the brain associated with different 

frequencies are given below: 

 
Table 2: Brain Locations to Record Specified Signals 

 

Rhythm Frequency Range Location 

Gamma Above 25 Hz Occipital 

Beta 12-25 Hz Frontal, Central 

Alpha 8-12 Hz Frontal, Occipital 

Theta 4-8 Hz Temporal, Midline 

Delta 1-4 Hz Frontal 

 

Conclusion 

The brain-computer interface is a communication method 

that joins the wired brain and external applications and 
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devices directly. The BCI domain includes investigating, 

assisting, augmenting, and experimenting with brain signal 

activities. Due to transatlantic documentation, low-cost 

amplifiers, greater temporal resolution, and superior signal 

analysis methods, BCI technologies are available to 

researchers in diverse domains. Moreover, it is an 

interdisciplinary area that allows for biology, engineering, 

computer science, and applied mathematics research. 

However, an architectural and constructive investigation of 

the brain–computer interface is exhibited in this article. It is 

aimed at novices who would like to learn about the current 

state of BCI systems and methodologies with special 

emphasis laid upon the common techniques of EEG used in 

BCI. The fundamental principles of BCI techniques are 

discussed elaborately. It presents a summary of the present 

methods for creating various types of BCI systems. The 

study looks into the different modes of signal acquisitions 

from the brain while simultaneously throwing light on the 

physical areas from where various signals can be obtained 

using any of the mentioned methods. Lastly, BCI 

technology advancement is accomplished in four stages: 

primary scientific development, preclinical experimentation, 

clinical investigation, and commercialization. At present, 

most of the BCI techniques are in the preclinical and clinical 

phases. The combined efforts of scientific researchers and 

the tech industries are needed to avail the benefit of this 

great domain to ordinary people through commercialization. 
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