
 

1039 

   

 

  
Int. j. adv. multidisc. res. stud. 2024; 4(3):1039-1044 

 

The Comparison of 2D Convolution and Max Pooling Process in Real Time 

Panca Mudjirahardjo 
Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya, 

Malang, Indonesia 

Corresponding Author: Panca Mudjirahardjo 

Abstract

Convolution and max pooling process are the necessary 

processes to get an object’s feature in convolutional neural 

network (CNN). There are many filters or kernels to be 

convolved with the input image, to get another form of the 

object’s edge. The max pooling is one way to reduce the 

spatial dimension. In this paper, we study a comparison of 

2D convolution and max pooling process in real time. The 

comparison are the process to get the output image. The first 

one, we perform convolution first, then the max pooling 

process. The second one is performing the max pooling first, 

then convolution process. Both process is required to get the 

object’s feature to be fed to classifier. The experiment is 

performed using programming language C++ and openCV 

library. 

Keywords: Real Time, 2D Convolution, Max Pooling, Feature Extraction, CNN 

1. Introduction 

Nowadays CNN is a powerful system in object classification. Convolutional neural network (or CNN) is a special type of 

multilayer neural network or deep learning architecture inspired by the visual system of living beings. The CNN is very much 

suitable for different fields of computer vision and natural language processing  [1]. Fig 1 is shown the conceptual model of 

CNN. Inspired by the work of Hubel and Wiesel, in 1980, Kunihiko Fukushima proposed Neocognitron  [1, 2], which is a self-

organizing Neural Network, containing multiple layers, capable of recognizing visual patterns hierarchically through learning 

and this architecture became the first theoretical model of CNN as in the Fig 2. 

A CNN consists of pre-processing, feature extraction, and classification stages. Pre-processing stages are grayscale conversion 

and contrast improvement. Contrast improvement is performed usually by contrast limited adaptive histogram equalization 

(CLAHE) process. The aim of CLAHE process is to improve image’s contrast, especially in dark condition. 

 

 
 

Fig 1: Conceptual model of CNN [1] 
 

The next stage is feature extraction. The first step in feature extraction is convolution process. Convolutional layer is the most 

important component of any CNN architecture. It contains a set of convolutional kernels (also called filters), which gets 

convolved with the input image (N-dimensional metrics) to generate an output feature map. 

The second step of feature extraction if pooling process. The pooling layers are used to sub-sample the feature maps (produced 

after convolution operations), i.e. it takes the larger size feature maps and shrinks them to lower sized feature maps. While 

shrinking the feature maps it always preserve the most dominant features (or information) in each pool steps. The pooling 

operation is performed by specifying the pooled region size and the stride of the operation, similar to convolution operation  [1]. 

 

  

Received: 18-04-2024  

Accepted: 28-05-2024 

 



International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

1040 

 
 

Fig 2: Schematic diagram illustrating the interconnections between layers in the neocognitron [2] 
 

2. The Proposed Method 

The method of this study is shown in Fig 3. We have two 

study scenarios. The first one, the input image will be 

converted into CLAHE image first then be filtered with a 

convolution process. The filtered image, then be processed 

max pooling to reduce the spatial dimension. The second 

scenario is the input image will be processed max pooling 

first, then be filtered by a convolution process. 

 

 
 

Fig 3: The method of this study 
 

2.1 Contrast Limited Adaptive Histogram Equalization 

(CLAHE) 

Adaptive histogram equalization (AHE) is a 

computer image processing technique used to 

improve contrast in images. It differs from 

ordinary histogram equalization in the respect that the 

adaptive method computes several histograms, each 

corresponding to a distinct section of the image, and uses 

them to redistribute the lightness values of the image. It is 

therefore suitable for improving the local contrast and 

enhancing the definitions of edges in each region of an 

image [1, 3, 4]. 

However, AHE has a tendency to over amplify noise in 

relatively homogeneous regions of an image. A variant of 

adaptive histogram equalization called contrast limited 

adaptive histogram equalization (CLAHE) prevents this by 

limiting the amplification. The one implementation of 

CLAHE is used for improve the visibility level of foggy 

image or video [4]. 

In CLAHE, the contrast amplification in the vicinity of a 

given pixel value is given by the slope of the transformation 

function. This is proportional to the slope of the 

neighborhood cumulative distribution function (CDF) and 

therefore to the value of the histogram at that pixel value. 

CLAHE limits the amplification by clipping the histogram 

at a predefined value before computing the CDF. This limits 

the slope of the CDF and therefore of the transformation 

function. The value at which the histogram is clipped, the 

so-called clip limit, depends on the normalization of the 

histogram and thereby on the size of the neighborhood 

region. Common values limit the resulting amplification to 

between 3 and 4. 

It is advantageous not to discard the part of the histogram 

that exceeds the clip limit but to redistribute it equally 

among all histogram bins [5-8]. 

 

 
 

Fig 4: The histogram distribution in CLAHE [5] 
 

The redistribution will push some bins over the clip limit 

again (region shaded green in the Fig 4), resulting in an 

effective clip limit that is larger than the prescribed limit and 

the exact value of which depends on the image. If this is 

undesirable, the redistribution procedure can be repeated 

recursively until the excess is negligible. 

The CLAHE algorithm has three major parts: Tile 

generation, histogram equalization, and bilinear 

interpolation. The input image is first divided into sections. 

Each section is called a tile. Histogram equalization is then 

performed on each tile using a pre-defined clip limit. 

Histogram equalization consists of five steps: Histogram 

computation, excess calculation, excess distribution, excess 

redistribution, and scaling and mapping using a cumulative 

distribution function (CDF). The histogram is computed as a 

set of bins for each tile. Histogram bin values higher than 

the clip limit are accumulated and distributed into other 

bins. CDF is then calculated for the histogram values. CDF 

values of each tile are scaled and mapped using the input 

image pixel values. The resulting tiles are stitched together 

using bilinear interpolation, to generate an output image 

with improved contrast. 

To increase image contrast, use the CLAHE algorithm as 

below. Grayscale and color photos can both be processed 

using this approach. 

CLAHE algorithm steps are as follows [9]: 

Step 1: Input image 

Step 2: Segment input images into tiles 

Step 3: Compute histogram for each tiles 

Step 4: Apply TFM to compute clip limit 

Step 5: Limit the contrast based on computed clip limit 

Step 6: Check for enhanced image 

Step 7: Enhanced image 

http://www.multiresearchjournal.com/
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Contrast_(vision)
https://en.wikipedia.org/wiki/Histogram_equalization
https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Signal_noise
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE
https://en.wikipedia.org/wiki/Cumulative_distribution_function


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

1041 

 
 

Fig 5: Steps followed in CLAHE algorithm [9] 
 

Fig 5 illustrates the steps to be followed in the CLAHE 

algorithm. Prior to creating a histogram for each context 

region, a given input image is first separated into context 

regions. So that various portions of the image may be easily 

linked, a mapping function is used to produce an image 

mapping. The image noise is subsequently reduced using an 

interpolation approach. This enables us to lessen the noise in 

particular regions of the image. Although the method 

denoises the image, it does not do so fully. 

 

2.2 Filter Kernel 

A filter, or kernel, in a CNN is a small matrix of weights 

that slides over the input data (such as an image), performs 

element-wise multiplication with the part of the input it is 

currently on, and then sums up all the results into a single 

output pixel. This process is known as convolution. 

Filters are at the heart of what makes CNNs work. They are 

the primary component that helps the model extract useful 

features from the input data. There are many filters, such as 

Prewitt filters, Sobel filters, Laplacian filter, Robinson 

compass filters, Krisch compass filters, etc. Some of filters 

are shown in Fig 6 [10]. 

 

 
 

Fig 6: Some of filter kernel [10] 
 

2.3 2D Convolution 

2D convolutions, a convolution generalized to matrices, are 

useful in computer vision for a variety of reasons, including 

edge detection and convolutional neural networks. Their 

exact usage will not be discussed here, and instead we will 

discuss an efficient way to calculate a 2D convolution with 

the FFT we have already developed. We have a “data” 

matrix, representing an image, and we have a kernel matrix, 

which is the matrix we imagine sliding over the image. This 

is also known as a filter [11, 12, 13]. 

For 2D convolutions, the result is slightly ambiguous 

depending on how one defines it. We will use scipy’s 

definition, where to calculate the value of the convolution at 

a particular point, we imagine the bottom right corner of the 

kernel placed over that point. 

We define the 2D convolution between an image x of size 

M×N and a kernel h of size H×W as follows (similar to the 

1D case, we assume both matrices are padded with 0’s):  

 

 (1) 

 

This operation is also symmetric, so what we call the image 

and the kernel is essentially arbitrary (by convention, the 

kernel is the smaller matrix). The resulting matrix is going 

to be of size (M + H − 1)×(N + W − 1) from the same logic 

as the 1D case. Thus, the time it takes to compute the 

convolution is O(MNHW). We can, however, take advantage 

of a trick if the kernel has a certain property. 

 

 
 

Fig 7: A convolution process [11] 
 

2.4 Pooling Layer 

The pooling layers are used to sub-sample the feature maps 

(produced after convolution operations), i.e. it takes the 

larger size feature maps and shrinks them to lower sized 

feature maps. While shrinking the feature maps it always 

preserve the most dominant features (or information) in each 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

1042 

pool steps. The pooling operation is performed by 

specifying the pooled region size and the stride of the 

operation, similar to convolution operation [1]. 

 

 
 

Fig 8: Illustrating the max pooling process [1] 
 

There are different types of pooling techniques are used in 

different pooling layers such as max pooling, min pooling, 

average pooling, gated pooling, tree pooling, etc. Max 

Pooling is the most popular and mostly used pooling 

technique. 

The main drawback of pooling layer is that it sometimes 

decreases the overall performance of CNN. The reason 

behind this is that pooling layer helps CNN to find whether 

a specific feature is present in the given input image or not 

without caring about the correct position of that feature [1]. 

Typically, the size of the pooling window is 3×3, and the 

stride with which the window is moved is also 2 pixels, as 

shown in Fig 7. This setup reduces the size of the input by 

half, both in height and width, effectively reducing the total 

number of pixels by 75%. 

Max pooling offers several benefits in the context of CNNs 

[8]: 

Feature Invariance: Max pooling helps the model to 

become invariant to the location and orientation of features. 

This means that the network can recognize an object in an 

image no matter where it is located. 

Dimensionality Reduction: By down sampling the input, 

max pooling significantly reduces the number of parameters 

and computations in the network, thus speeding up the 

learning process and reducing the risk of overfitting. 

Noise Suppression: Max pooling helps to suppress noise in 

the input data. By taking the maximum value within the 

window, it emphasizes the presence of strong features and 

diminishes the weaker ones. 

 

3. The Experimental Result 

In this section, we explain our experimental result. We use 

an input image captured by a camera. The image size is 

640×480 pixels. This experiment is performed using 

programming language C++ and openCV library. 

The programming code to convert the RGB input image into 

grayscale is: 

 

cvtColor(imgOriginal,imgGrey,COLOR_BGR2GRA

Y); 

 

The programming code to convert the grayscale image into 

CLAHE image with clip limit 4, are: 

 

Ptr<CLAHE> clahe = createCLAHE(); 

clahe->setClipLimit(4); 

clahe->apply(imgGrey,imgClahe); 

 

To create the filter kernel 3×3 is as follows: 

 

kernelPFH = (Mat_<int>(3,3) << -1, 0, 1, -1, 0, 1, -1, 

0, 1); //Prewitt filter horizontal 

 

Then the convolution process is performed in 

filter2D(src,dst,ddepth,kernel,anchor,delta,BORDER_DEF

AULT) as: 

 

filter2D(imgClahe,output, -1, kernel, Point(-1, -1), 0, 

4); 

 

Where the arguments denote: 

▪ src: Source image. 

▪ dst: Destination image. 

▪ ddepth: The depth of dst. A negative value (such as -1) 

indicates that the depth is same as the source. 

▪ kernel: The kernel to be scanned through the image. 

▪ anchor: The position of the anchor relative to its kernel. 

The location Point(-1,-1) indicates the center by default. 

▪ delta: A value to be added to each pixel during the 

correlation. By default it is 0. 

▪ BORDER_DEFAULT: We let this value by default. 

 

The result images are depicted in Figure 9, 10 and 11. Fig 9 

is the result of convolution process in light and no-light 

condition. Fig 10 are the original, CLAHE and convolved 

image with different filter and filter size. Fig 11 is the 

convolved image before max pooling process (Fig. 11.c) and 

after max pooling process (Fig. 11.e). In Fig 11, it is shown 

the output image similar for both processes. 

 

 

 

 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

1043 

    
  

 (a) (b) (c)  (d) 
 

    
 

Fig 9: Processing real time video, (top) at light condition, (bottom) no light condition, (a) original frame (b) grayscale frame (c) CLAHE 

frame (d) convolved frame 
 

    
 

(a) (b) (c) (d)  
 

  
  

 (e) (f) 
 

Fig 10: The original, CLAHE and convolved image (a) original image (b) CLAHE image (c) convolved image by Prewitt filter 3x3 (d) by 

Prewitt filter 5x5 (e) by Sobel filter 3x3 (f) by Sobel filter 5x5 
 

   
 

(a) (b) (c) 
 

  
 

 (d) (e) 
 

Fig 11: The original, CLAHE and convolved image, (top) convolution then max pooling process, (bottom) max pooling then convolution 

process, (a) original image, 640×480 pixels (b) CLAHE image, 640×480 pixels (c) convolved image, 320×240 pixels (d) CLAHE image, 

320×240 pixels (e) convolved image, 320×240 pixels 
 

4. Conclusion 

In this paper, we demonstrate and observe the output image 

as the result of convolution and max pooling process. It is 

shown the output image similar for two processes. The first 

process is convolved image before max pooling process and 

the second process is convolved image after max pooling 

process. 

 

5. References 

1. Ghosh A, Sufian A, Sultana F, Chakrabarti A, De 

Debashis. Fundamental Concepts of Convolutional 

Neural Network, 2020. Doi: 10.1007/978-3-030-32644-

9_36 

2. Fukushima K Neocognitron. A self-organizing neural 

network model for a mechanism of pattern recognition 

unaffected by shift in position. Biological Cybernetics. 

1980; 36(4):193-202. 

3. Pizer SM, Johnston RE, Ericksen JP, Yankaskas BC, 

Muller KE. Contrast-limited adaptive histogram 

equalization: Speed and effectiveness. [1990] 

Proceedings of the First Conference on Visualization in 

Biomedical Computing, Atlanta, GA, USA, 1990, 337-

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

1044 

345. 

4. Yadav G, Maheshwari S, Agarwal A. Contrast limited 

adaptive histogram equalization-based enhancement for 

real time video system. 2014 International Conference 

on Advances in Computing, Communications and 

Informatics (ICACCI), Delhi, India, 2014, 2392-2397. 

5. Pizer SM, Amburn EP, Austin JD, et al. Adaptive 

Histogram Equalization and Its Variations. Computer 

Vision, Graphics, and Image Processing. 1987; 39:355-

368. 

6. Zuiderveld K. Contrast Limited Adaptive Histogram 

Equalization. In: P. Heckbert: Graphics Gems IV, 

Academic Press, 1994. ISBN 0-12-336155-9 

7. Sund T, Moystad A. Sliding window adaptive 

histogram equalization of intra-oral radiographs: Effect 

on diagnostic quality. Dentomaxillofac Radiol. 2006; 

35(3):133-138. 

8. Vidhya GR, Ramesh H, Effectiveness of contrast 

limited adaptive histogram equalization technique on 

multispectral satellite imagery, Proc. Int. Conf. Video 

Image Process, 2017, 234-239.  

9. Venkatesh S, John De Britto C, Subhashini P, 

Somasundaram K. Image Enhancement and 

Implementation of CLAHE Algorithm and Bilinear 

Interpolation. Cybernetics and systems: An 

International Journal, 2022. 

10. Filters in convolutional neural networks, 2022. 

https://blog.paperspace.com/filters-in-convolutional-

neural-networks/. 

11. Stephen Huan. Fast Fourier Transform and 2D 

Convolutions, 2020. 

12. Vincent Mazet. Convolution. Basics of Image 

Processing — (Université de Strasbourg), 2020-2024. 

https://vincmazet.github.io/bip/filtering/convolution.ht

ml 

13. Pupeikis Rimantas. Revised 2D convolution, 2022. Doi: 

10.13140/RG.2.2.11346.68809 

 

http://www.multiresearchjournal.com/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-12-336155-9
https://blog.paperspace.com/filters-in-convolutional-neural-networks/
https://blog.paperspace.com/filters-in-convolutional-neural-networks/
https://vincmazet.github.io/bip/filtering/convolution.html
https://vincmazet.github.io/bip/filtering/convolution.html

