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Abstract
In this paper, we show that 9%¢ has a lower bound and is radius. Finally, we give power bounds for numerical radii of

utmost equal to the sum of norms of £ and ¢ and also that the “re.
Sr¢ is Hermitian and is bounded above by its numerical
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1. Introduction
Studies on the norm of inner derivations lead ™ to introduce the idea of S-universal operators and criteria for the universality

for subnormal operators i.e. an operator T € B(H) such that | 6z |7 ll= 2d(T)  for each norm ideal 7 in B(H) and

d(T) = infiec{I T — 4 I}. In 2 jt was established the relationship between &7 .8z and 972 on B(H) where the operators T and P

] i i 1. ) - i
are S-universal. To be precise; supposing that T> 7 € B(H) are S-universal, then ' 721 BE) 1= 5 (171 BE) D) +18 [ BIH) 1 5pg

the norm of a generalized derivation implemented by two S-universal operators is less than or equal to half the sum of the
norms of inner derivations implemented by each operator [3I. The norm of a derivation &7 as a mapping of B() onto itself is
given by inf I T —AT'll 4] Kadison, Lance and Ringrose [60] showed that if T is self-adjoint and 8 maps a subalgebra of ()
into BUH) then Il 87 Il = inf{ZIT — A" ll: A" €6'} \where €' is the commutant of the subalgebra & = B(H), |n B the author used
an example of a self-adjoint operator to show that the hypothesis that (6(€) &) js inessential, taking & to be the subalgebra of
diagonal matrices with €' = . Later on, Bonyo [®! investigated the relationship between diameter of the numerical range of an
operator T € B(H) and norms on inner derivations implemented by T on the norm ideal, and further considered the application

of S-universality to the relationship. The relationship in [ determined using the fact that a generalized or inner derivation is an
operator and as such, one can calculate its numerical range as well as the norm whenever applicable. Indeed, it was noted in [l

that for any operator T € B(H) and norm ideal 7 in B(H) diam(W(T)) =1l 67| 7|l where "diam’ js the diameter. Furthermore, it
was shown that if T € B(H) is S-universal, and T a norm ideal in B(), then diam(W(T)) =l &r | l.|n [ Rosenblum
determined the spectrum of an inner derivation, 6 = TP — PT_ Kadison, Lance and in ¥ the author investigated derivations &
acting on a general € -algebra and which are induced by Hermitian operators. But [% studied a derivation 97 acting on an
irreducible € -algebra B(H) for all bounded linear operators on a Hilbert space . The geometry of the spectrum of a normal
operator T was used in (1! to show that the norm of a derivation is given by | 67 I =inf{2 I T — 11i: 1 € C} ysing the geometry
of the spectrum of normal operator . However, 4 raised the question on the ability to compute the norm of a derivation on an
arbitrary €"-algebra. Research of [3] |ater used the density theorem to prove that the extension of derivations of a €*- algebra to
its weak-closure in B(H) [14] js achieved without increasing norm. In 1251 the study computed the norm of a derivation on a von
Neumann algebra. Specifically, it was shown that if # is a von Neumann algebra of operators acting on a separable Hilbert
space H and T € @ and 97 is the derivation induced by T, then | 67 [ @ Il = 2inf{T — Z : Z € C} where C s the center of © [16],
Given an algebra of bounded linear endomorphisms £(*X) for a real or complex vector space ¥, it was shown that for each

element T € L(X) an operator &7 (4) =TA—AT js defined on £(X) and Il 67 I =2inf; 1T +ALl. Fyrthermore if Xis a
complex Hilbert space then the norm equality holds (71, Also 81 used a method which applies to a large class of uniformly
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convex spaces to show that this norm formula does not apply for £ and L°(0.1), 1 <p < e, p # 2. For L* spaces, the formula
was proved to be true in the real case but not in the complex case when the space has three or more dimensions.

The derivation constant &£ (<4) has been studied for unital non-commutative €*-algebra =2 (19, In [20] the author studied K (M(2))
for the multiplier M(+1) for a non-unital €*-algebra <?and obtained two results; that K(M{A)) = 1jf & = C*(G) for a number
of locally compact group & and £ (M(<A)) = jf G is (non-abelian) amenable group. However, 2 showed that in both finite and
infinite dimensional vector spaces, the norm of a generalized derivation is given by I 2az =1 A1+ B for 3 pair
A,B € B(H), |n [20 and 122 the authors showed the necessary and sufficient conditions for a derivation &7 to be norm-
attainable. Several other results exists on the inequalities of derivations and commutators on €*-algebras. For instance [ used a
polar decomposition T=UP of a complex matrix T and unitarily invariant norm I[ll-lll to prove the inequality
I |UP — PU =] |T*T— TT*| I I UP + PU Il UP — PU Il Williams [79] proved that if a commutator TX — XA = al
is such that 4 is normal, then the norm relation I / = (TX —=XT) =11 Il holds. Anderson [, generalized Williams inequality
and proved that | P — (TX — XT) I = Il P II. |_ater, ) proved that if T and P are normal operators, then { = (TX —XP) = I I'll. The
norms of derivations implemented by S-universal operators have been shown to be less than or equal to half the sum of inner

o L. = o
I 87p 1 =20 8p_a Il + 1l 8p_y 1)

derivations implemented by each operator in Il and in particular was proved that, and

I67—sp-21 Sg W Sz-all +1 8p-a 1) Using unitaries and non-orthogonal projections, Bhatiah and Kittaneh ! determined
max-norms and numerical radii inequalities for commutators. Some authors have used the concept of classical numerical range
to study different classes of matrices of operators. For instance, many alternative formulations of (?.@)-numerical range
Wp,q(A) = {Ep((UAU*)[QD) for a unitary U where 1 =P =g =n for an n X complex matrix ¥, with @ % @ leading principle

submatrix X[a] and the Pt% elementary symmetric functions of the eigen values of X[a]1 8l |n "l the author extended the results
of these formulations to the generalized cases, gave alternative proofs for some of them like convexity and even derived a

formula for (P, @)- numerical radius of a derivation as »a(T) = max{| u |: 4 € Wp,a(T)}. |5 14 gpplied positive operators in the
proof of a similar result. Orthogonal projections being bounded operators, have extensive uses on implementation of

derivations and construction of underlying algebras of the derivations. Vasilevski ["® studied the applications of €"-algebras
constructed by orthogonal projections to Naimark’s dilation theorem. In %2 the author used orthogonal projections to induce a

derivation on von Neumann algebras. In [ the researcher used mutually orthogonal projections acting on a € -algebra to prove
that any local derivation is a derivation.

2. Basic definitions
Definition 2.2.0: An elementary operator T € B(H) is said to be norm-attainable if there exists a unit vector *o € H  such that
Il Txp) I=1TI.

Definition 1.21: A Hilbert-Schmidt operator T with orthonormal basis {2:: 7 € I} has a Hilbert-Schmidt norm Il- Il is defined by
ITHa= (Bier 1 Te; 17)

Definition 2.2.1: Let A7 denote the complex vector space of all % ™ Hermitian matrices, endowed with the inner product
{A,B) = Tr(B"A) where Tr(.) is the trace on the positive matrices and 8" is the adjoint of B, then:

(i). the trace norm of T, is defined by, I T = Zios:T .

(ii). the spectral norm of T, also is defined by, I T Il 2 = max{s;T} \here siT are the singular values of T, i.e., the eigenvalues
1
of IT]=(T"T)z,

Definition 2.2.2: A tensor product of H with K is a Hilbert space P, together with a bilinear mapping @ : H X K= P gych that
(i). The set of all vectors €= ¥)(x € H, y €K) forms a total subset of P, that is, its closed linear span is equal to P;

(ii). (@G, ¥, @(xa, ¥2)) = (=1, %) (yy, yodforxy, % €H, y1, y2 €K
We refer to the pair (P:®) as the tensor product.

Remark 2.2.3: Let XX’ and Y be vector spaces over some fields and P * X*—= X' and Q: Y= ¥ pe operators. Then there
is a unique linear operator P @ Q: X@ Y= X' @Y’ defined by P O QX ®Y) = P ®QE), YxeX, vy €Y

The function f: XxY = X' &Y' defined by fx¥) = P(x) ® Q) is bilinear and so by the universal property of tensor

products, there exist a unique operator P © Q for which the above equation holds. The map P @ Q is called the tensor product
of P and Q.
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3. Main results

Lemma 3.0.0: Given that P.@.X €B(H) are matricial operator on a finite dimensional separable Hilbert space #™ then
PX —XQ is also matricial.

Proof: Let [Pis]: [9:1 and [¥i1] denote the matrices of the operators @ and X respectively. Suppose that Vs = V.-, Vs forms a
basis of H" over a field K, then a simple computation shows that for (7 —@)v; = Pv; —Q v;

= X;piv; -X;q4Y;
= Z}'(:p:’j - q:-}-)!.’}-

which can also be written more compactly as Z;Ye%swhere ¥4 is the finite difference P& ~ dsfor every  and J. For a given
2 € K then it is also clear that #[Pis] = [4Pi;]- we adopt the order v:T (instead of T%:) for the image of an arbitrary operator T
which acts on Hx for v € Ha, Thus, V:TX = (DX = (Zpgv; X =205y X) gyt ¥ = Zi % and so by substituting
in the equation above vyields VI(PX)=E;pi;(Ex xpvk) = EiPiXudvk oo that [PX1= @y \where for eachi and 7,
;= X Pii%jx_ Thus, we can also find Bij = i X 50 that ¥'iy = & — Bij = TaPijfn — L X,

Theorem 3.0.1: Let 8 + B(H) — B(H) be a generalized derivation defined 2¥ ®re(X) = PX —X@Q for orthogonal projections P
and @ induced by 9x. then ! 8¢ Il = {Z1 P 15 = (51 4 1% g 1 820D 1 =1 PILX 1 =1 X NI Q I

Proof: Taking %/l =1 for a fixed 2@ € Po(H) then Sr.o(fa) = Pfi— /24, Suppose that P and @» which induce P and @
respectively are bounded, then z.efm = Pfa — /24 can take the form of a diagonal matrix and £»(Pxf — f24.) is also bounded.
Now

I SP,Q{ﬁ:) ":= I E:z(.p:lzﬁz - ﬁ:'?:-:) ":

=1 E:l: p:l:ﬁz ":_ I E:l: q”ﬁ: ":

= BalealP I A IP=Zalgn I* 1 £ 17

= {Enlpn |: - E:z| On |2}{En I f;z ": }

so that on taking the supremum over both sides of the inequality gives
sup{ll Pf, — @ 1: 1 f 1= 13 =11 6p,o(f) |
2 (S0 1Pn 12— (50 100 1207
Conversely the following relation hold
0 Zapnfo = Fo@a) 12 < ({80 10 125 = (S | G 1P ]S I o 1392
Which implies that the following also hold.

{” E:z(pnﬁz - ﬁzt?n} "} = {En |p:lz |: I ﬁz ”: - En |':?;lz |: I f;z ":}
= {Zalpnfy 12— Ea l gufy ":}

Iy

{" E:l: {-p:l:ﬁ: - ﬁ:'?:l:) "}

So
sup{l f, = Q@ I: 1 fo Il = 1} =150 (fa) | ang for an arbitrary X € BUH). then for X = n Xafa

1 8pg(X) I = {1 B (S | Xnfys 122 = (T | X fy 122 {80 1 4 12

=IPINX0=0X00el

The following is a discussion of the norms of derivations in the context of tensor product of operators. We show that indeed &
P, Q is linear and bounded in this context.
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Remark 3.0.2: Suppose that # = % is infinite dimensional complex Hilbert space, then £~ is unitarily invariant to the Hilbert
space  tensor product €2 @ £* et PE(H™H) QEB(H™ H:) and an arbitrary X:H"—= H™ for
H"™ = Hy @ H, =Hyy, © Haz- There is a unique linear operator P O X € B(H" @ H", Hy @ Hy) called the tensor product of P
and X satisfying (P © X)(x ® ¥) = P(x) ® X(3) and similarly (X © @)y ® x) = ¥(») ® Q(x). Moreover, there is a unique
injective linear operator 6: B(H", H) @ B(H", H;) = B(H" @ H,), B(H" @ H;) which satisfy
BPRX-XRQ =POX -XOQ

Theorem 3.0.3: Let P € B(H", Hy), @ € B(H", H2) and an arbitrary X : H" = for H" = H, @ H = Hyy @ Haz: then %20 is linear
and bounded.

Proof: By the definition of derivations, the map re(®) = P@X —X @ Q: B(H, @ Hi) — (H2 ® Hx) i defined by
PO XELx ®1)—X ©QELy, ®x) =31, Px)® X(y) — T, X(x) ® Q) for all ¥ € H™

Let @ BEF gnd Lizn¥: By iz ¥s @Yy €EH ® Hiy Then
POX-X0Q(aZkix ®y: -f Iy @) )=POX-X OQ(aZiLyx ®y)+ (£ Il ®)))

=POX-XOQ@Iix; @)+ P OX-X OQ(BIL,x: @y',)
: : X 0O Qe T @y,
=POX@Il,x @y )-X'DQ(.“Z?:ixi@}’:‘}+P©X(ﬁz?=1xfi®}’ff}‘ Qﬂ;x ’
= aZP{:xE-)@X{:}-}) - HZX'[:XE)@Q(}’J +ﬁZ P'f:x“a)@X'[}’ff}—ﬁZX(:xfe)'@ Q(}’fE}G’POX(er ® ¥ )— aX
=1 =1 =1 i=1

=1
@Q(in‘g’}’i)"‘ﬁpgx(sz ®}’f5)—ﬁ}£’©@( x'; ®}”E)

i=1 i=1 =1

n

=alP QX —-X DQ)(ﬁin- ®y)+BPOX -X OQ)(:HZXFE ®v.)
Now for the case of boundednessi,=1 =t
1P OX-X OQaZh,x, @) Il = IZ%, P(x) @ X(3;) — T2, X(x) @ Qv )l
SIELP)® X)) - ZL, X(x) @ Q(y; ) I
SIEL, PE)@X(y) I +I1 B X(x )@ Qly; ) I
I ER PG I XGr) I+ S5 X (x) 1 X () |
SNEL P I Ce) NIX 00O+ ZEy X 00 Ce) W@
S UPIIX I EE, Doaey; I+IX 01Q 1 X2y 1l xyy; |
= (P ILX I+ XI0Q DX, I 1l y; .
Letting (I P I X I +1 X 1 Q 1) = M, thys M is the upper bound for PX — X@

Theorem 3.0.4: Let ¥ € B(H) and orthogonal projections P:@ € B(H) then I P O X =X QQ I=1PIIX I =l XN QI

Proof: n n
IPOX —X OQI= sup {II chxi- By)lI=11P QX —-X OQ(Zx:- ®}=e)"}
i=1 i=1

< Sup{ll D @y I=1IP M % @y ) I-IXIQ1
i=1 i=1

I (in Ry I ||le- ¥ ||}
i=1 i=1

=1PIEXN—=NXxunel
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Conversely,

IPOX-XOQI=supll P QXZL,x; ®y:)—X Q0L x; @ %) IVELx; ®y; € X @Y} g

E;!:j_xi @y )=0.

Then

1P OX(EL, & @y )-X OQEL, x By )l
IIPDX—XDQIIE{ - '“”rzi )x_fgb_.“:‘f 1% B:) Vz?zlxi-@}:ieﬁc’@ﬁ’}
e L

And Y@y )= 0=1P X IN=0X11Q .
Thus [1POX—X Q@I=IPIIXI0—0X00e i

In the sequel, we will consider inequalities for the norms of derivation discussed. The inequalities considered will be on
generalized derivations and the results generalize to the cases of inner derivations.

Theorem 3.0.5: Suppose that P.@ € Po(H) are matricial operators, then
: + {E:;_;:J_ E;':}':j_ |pa’xij - xi’_;l'ﬁ‘jl: )Efzj'Jf’—’}':l + {Ei:l |'-Q|_;|'x3_;l'|:}; on ﬂ} HE

Il L?pJQ{:X) 2= {E:;_;:J_ Eg':}':llpz'xij - xa‘_;u"-i'_;u‘|: )EF}')

Proof: Suppose that £ and @ are positive diagonal ™ X ™ matrices with eigenbases P= and gn respectively for =1, with
Pn(1=ps ) =0and 4.(1— s ) = 0 Gijven arbitrary ¥ € B(H) then,

m 0 0 g, 0 0 X11 X1z X3
P=10 p, 0,0=]0 g O X =|%21 X2y Xpg
0 0 0 0 0 0landan arbitrary X31 X3z Xazl withPr 2Pz = Othen
Pi*yn — X1 Pi¥in — X12Pz Pi¥as
PX — XP = | P2X21 — X2 PaXoz —X22P2 PaXag
—Xz;Py —X32Pz 0
PixX11 —xnh 0 0 0 P1¥1z —X12Pz Pi¥as
= 0 P2Xos — XaoPp O+ | P2¥21 — Xy 0 PaXa3
0 0 0 —X;P —X32P2 0

So that for a commutative B(H) then

0 P1¥1z — X12Pz2 Pi¥i3
PX —XP = |P2¥a1 —XuPy 0 P2¥z3
Xz —Xa3zPz 0
Now
[PrX11 H X1y PaXis + X2P2 PiXas
PX + XP = |pPzXa1 T XuP1  Pa¥zz T X220z Pr¥za
X3P X322 0
P1X11 + X 0 0 0 P1X1z T X2Pr Pr¥aa
= 0 PaXoo+ Xoopy 0|+ [ Pa¥zr +Xoapy 0 P2Xag
0 0 0 X1l X3z 0
and

X1 — X111 T1Xiz — X120z GiXas
QX —XQ =|92%21 —Xznafh  GoXzz — X2z {2¥23

—Xz11 —X322 0
f1%X11 — X131y 0 0 0 q1X12 —X1202 G1¥13
= 0 QaXzz — X220y 0+ | G2¥21 — Xo1y 0 Q2%X23
0 0 0 —Xz1q1 —X3z202 0
0 G1X12 — X922 G1X43
_ QX —XQ =| gax21 — Xnfy 0 q2X23
Similarly for a commutative B(#) then —X3101 —X32032 0
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Now
f1%X11 t X111 QiXiz T X2z QiXag
QX + XQ = | qzXz1t X0q1  Q2Xz2+ X220z GaXa3

X311 X322 0
G1X11 T X11G) 0 0 0 f1X12 + X122 G1¥13
= 0 GaXoa+ Xoogs 0] + | G2X21t X1y 0 f2X23
0 0 0 X311 X322 0

We obtain an operator

P11 — X111 Pu¥az — X242 Pi¥as
(PX —XQ) = |PaXa1— X1 PaXaz— X222 0
—q1¥31 —gz2%3z 0
PLX — X 0 0 0 PiX1z — X122 Pi¥a3
= 0 PaXoy— Xoaqy O+ | P2¥a1— ¥nq 0 0
0 0 0 —q1X31 —2X3z 0

Now on introducing the norm function to the equality results into the norm inequality;

Pi%*y1 — X111 PiXiz — X292 Pi¥as P1Xyq — X910 0 0
PaXz1— X211 Pe¥zz — X229z 0 = a PaXao — X22G2 0}
—q1%31 —gz2%3z 0 0 0 0
0 PiXy2 — Xq92q2 0 0 0 0
(|| P2X21 — X2 0 0} _H[ 0 0 0}
0 0 0 —1X31 —(2X3z O

Application of Hilbert-Schmidt norm to this, gives us the following
{:E:i}':lz;':j:l |p:'x:'_;l' _x:'_:l"?_:l'lj )Ei:}') + {Z:a_;u:l Ei:_;':1|p:'x:'_;l' _x:'_:l"?_:l'lj )Ef:})f'-"}') + {:E:_;':llqu'xa_:flj);
Lemma 3.0.6: Let P € Po(H) and X is compact, then 5i(PX) = 5;(XP) =11 X Il 5,(P)

Proof: 5i(PX) = 5;(XP) js jmmediate from the commutativity of the singular values and 5i¥P) =X Is;(P) fojjows from the
correspondence 5i¢) = and the inequality, |11 PX 111 <I P 1IEX 1,

Theorem 3.0.7: Let B(H) pe a C*—algebra, Po(H") a commutative subalgebra of B(H) and a map %2e, such that
Opg : PolH™) = B(H) | gt Opg * MalPo(H™)) = Ma(H™) pe 3 linear map between matricial operator spaces M- (Po(H™) and
M, (H™), For n-tuples of %2¢, whereby &n: Mu[Po(H™)] = M,[B(H)] then 8.[(P.@)] = [6(P,@)1¥P,Q € M,[Po(H™)] and
[P]1 = [Py, P2], [Q]=1[RQ1,Q:] Moreover, | 8.0 1=l 8pg llcs holds,

Proof: We apply diagonal matrices [P] and [@]. For ® = 1, then by definition of 9= 81 and & are coincidental (2! hence,
16 1=11 61| We now proceed to give proofs when ® = 2 and when @ = 3 Forn = 2, let [P [Q] & Mz[Po(H™)].jk = 1,2,
then for 82: Mz[Po(H™)] = Mz[B(H)] we now have,

sro=a( ] - 9% 2))

B [PlX - X0, 0 }

= 0 P.X — X0Q,
|:6|:P,,Q,) 0 :|

=L 0  wres]and

(e 2ll5 -6 305 DI=I 0™ rx Zred

[SI:P.,@.) 0 } H
0 l"’}:':f"::'i?:)

=[ Ejz1Zi=r 1 8((5;,00 T (Hilbert-Schmidt norm)
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= (1 5((Py, Q) 1241 8((Pa, Q) 12)3

> [I 8((Py, Q) 12T
=11 8((P, Q) I
=1l &,((Py, @) .
Therefore,
I 85 Il = sup{ll&;(PQ) : [PQ] € M[Py(H™)II}

= sup{ll 8, (P, Q) I} =18 |l

and hence Il 82 =11 & II.
PX-X0Qy 0 0
n = 3, &3 0 P X -XQ, 0
When 0 0 P;X —XQ5
SipLa) 0 0
=| © Smgy O
0 0 S1p.0a)

which implies that

P,X —X0Q, 0 0 S(p00) 0 0
83 0 PoX —XQs 0 = 0 Opey O
0 0 PEX - XQE 0 0 6':93@3:'

[ 32, 3oy 180700 12T

(1 80P, Q) 12 +1 8((P2, @2) 12 +11 8((P3,Q35) 12):

= [ T3, T 16((P, Q0 1P

=11 8([8((P;, Qi) -
This implies that
183 1= sup{ll 83[8((P;, Q:)]: [8((P;,Qx)] = M3[Po(H™] I} = sup{ll 82[8((P;, )] : [8((P; Q)] = Ma[Po(H™M]I[} =11 8, I
and therefore, Il 3 1= 11 &2 11,

Lastly, consider Gnsrt M:z+1[PD(H”)] - M:z+1[B(H)] defined by S:z+1[6((%u Q)] = [S((:F;, Q)] for all J k=1,...,n+ l_
We obtain,

18,41 [(PQ) ;2] =1 [5(PQ) ;] 1
= (X2 W 160 Q) 1P

> (3, iy 16008, Q) 17T

=1l 8, [80(P; Q)] 1.
Therefore, on taking supremum on both sides of the inequality above we get | dx+1 I =11 & Il Application of the property of
complete boundedness of the norm of &, we further get 06 lcg= sup{ld,ll :n €Nlwhich implies that
& e =118, IV €N Therefore, I 6 1 =118 lics, this completes the claim.
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Example 3.0.8: Let ¢ M2(C) = M2(T) be a derivation defined by o) = PX —XQ | ot an operatorP, be defined by
P(&) = € on a finite dimensional Hilbert space H, for an orthonormal basis &+J = 1.2:--
We can then set the matrix for an arbitrary operator 4 and that of £ as,

v=[a ale=[5

It is clear by simple calculation that

PX —XP — [91 ¥ —xpelld g xlz]

—Xa1lh 0
Now suppose that # has a unique direct decomposition given by H = ranP & kerP and €1 is an identity in the range of 7,

0 &) Xqo &y 0

X —XP = [ } . = }
X218 0 1. We can find a unitary 0 —ezlsuch that

P
then PX — XP pecomes

0 €1 x12:| _ Yoy _
—xaie o | = ;WX X
1
= =(UX —XU*)
By triangle inequality,
1 1 1 1
3 I (UX =X | 55 I (UX + XU) = 3 I Ux | +§ XU N=1XUl=1XI.

Now considering another operator @ similar to £, we can get another orthonormal basis firJ = L2 gych that € is defined by
=[5 dl

Letalso 1 ¥ 1 ={Enle, PE=1 1PX 1= {S;16*: =PI1QX1I={Z; 151 =Q and so
| PX —XQ I=I PX +XQ | Il PX I +1 XQ I

LLemma 3.0.9: Suppose that for an arbitrary ¥ € B(H) and PLX, PoX, XQ1, XQ2 € C3 then,

— 12 o 2 o P . .
= NP =0 iy P& I =0 PXly £or 0 < p = 00 gnd the reverse inequalities hold for 1 = » < o,

Proof: If @1 and @z, are nonnegative real eigenvalues for 1 and Fz, then
- Py P . - . . .
P EL ar = (Bia1a0)7 = A The inequalities follow, respectively, from the concavity of the function
f(&) = t7, t €[0,0) for 0 < p = 1, and the convexity of the function f(£) = t7, t €[0,0) for1 = p < oo.

Proposition 3.1.0: Let ¥ =1 P2 @ = Qu @2 €, gng an arbitrary ¥ = X1, X2 € B(H) for some P = 0. Then

E
$2m I PXy — BiX 5+ S22, 1 XiQi — X;Q; 15 p +32my 1 X — X5 152 (Dpi_yo¥%= | PXi — X;Q; 15+

p-2 p-2

Dy 3 3%m1 1 XiQs = X; 10+ Dy p T2y 11Xy — P X; 1) — (I 22,2, (P — X;Q0) 1B+ B2, (X,Q; — X:) 12+ T, (X, — PX) D)

for0 < p <2

Proof: We define a constant De by Pp = Zi=i m(P:X:)
Where,

(1, (PX;) = 0;

E?:ln{:Pin') = ‘.l 0, {-PEX:') =0,
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and Dp = E:-::lﬁ'(:Xan)

where

) 1, (X; = 0;
w00 = {y (Ungj

We prove the case for 0 < p < 2 and infer the result onto the other cases. We have

B2ma I Xy = X;Q; 15 + B3 = 1 XiQi - X;Q; 15 + B2 =y 11 X; — X; 15+ (I T2, (PeX; — X,Q0) 15+l T, (X,Q: - X)) 15+

125, (X - PX) D) = 2(Ticicgen | PX; — BiX; 15+ Tacicyen | X:Qi - X;Q5 15+ Ticicyea 1 X — X 15) +

(1 T2, (PX; — X:Q) 15+ zf_li'xoi —X) BHITE (X — PX) 1E) = 2(Chcicjen | | PiXi— BX; |2 1205 +

Sreicjer |1 XeQi = X;Q12 1203 + Saciejen 11X — K12 1273) + (I Ty | BX; — X,Q; |- 123+ | ﬂ:ﬁn-of— XI55+
2 = ?3.'—

IS0 X — X2 I23) = ||zlq-¢}-¢:| BX;, — BX;|2 + zch:ur-of - X;Q;1?

e 5 7 - p/2 -
IZicicical XeQi = X051 + Tucicjcal®i — X;12+ By |(:Q = XD, + IIZM{}-{:m - X2+ zmm PiX;— PiX;|% +

7

E:':=1|X=' - ’ z:; = ” E:;}'—ll PXi— X;Q; ? ::.': + ||E:::}'=l| X:Q; — }'lj ::;; + ”E:::,_:f:i'Xi - =

9—1 5 pf2 _—' p/2 ?—1 9 p/2 _—'
Df.sx -X0Q Z_z'_;u'—J.” P"Y XQ_;I| + D XO0-X E = J.”lXQ: | e j‘-pr},_;‘:i”le D AQE L= J.” P
Q_:l” + D,a @;LEE,} J.”XQ: - ” + D,a mEa,} J.”X R;X;“p

Proposition 3.1.1: Let P P2,@1, @2 € Cp for some P = 0, Then

ShmallPX =BT+ 5hm X - XQill] 2 2227258 1Pk - X0, — 20183k — %@ 0 cp= 2

p-2 p=2 p=2 p-2

— - —_ . — _a P — .3
Proof: We set Pesx =t = 2Dg" Tzl Xl DypZismllX =B, = 2057 L IEXIE
Now

P_‘" P2
0 =52, 1P =Bl + 52,2 130 = 5,011 - Do B2 1P — X501 - (Dxa S XQil5 +
p-2

Doy T3, 1 B X ni) + (S = 2,005 + 5% Xe@ull) + 1522 ) = £2m0 1P = P17 + 322 xe0s - 50517 -

p-2 2
ZDp,a ,aQZ,} LHPX X‘?}” +2||Ea 1(PX X‘? )” +(Dp,a ,aQE,} LHPX XQ_:,” z 1{:P:'X:' _X:'Qi)i)""
(Ilzszlea-lli—mgz?:lllpfxflli}(zi %0115 — zﬂm T 1% II") oo ShmllPe; - =50l —Ist.ex: —x00] =

g_l 2 pf2 EJ.'-

DJ:-’X—XQEE'_;}'=1”|PX X;Q;1* —|lzZ,1Px; — = 0.

Since 202 s greater than or equal to 1, we deduce from lemma 4.20 that

” P . .
”Ei_:l P:'X:'”z —2Dg, Zi_:l”PiX:'”z = ”Zi_:lP:'Xi“: - Ei_=1”X:'P:'”3 =

P2
Iz2, %@l = 20,5 5%, 1%.Q2

Similarly, we have ¥ 1t therefore implies that

52 It — BT + 52 l%00 - X007 2 205 o T2 miliie - 101 — 2T - QI 2
227252 Pk - ;0,0 —2llsk. ek, —X;-Qf)ll;, > Dpx-xg.

4. Conclusion
In this paper, we have shown that the norm of a derivation, induced by orthogonal projections via tensor product is linear,
bounded and continuous. Furthermore, we have inequalities of such a derivation induced by n-tupled orthogonal projections.
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