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Abstract 

In this paper, we show that  has a lower bound and is 

utmost equal to the sum of norms of  and  and also that 

 is Hermitian and is bounded above by its numerical 

radius. Finally, we give power bounds for numerical radii of 

the . 
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1. Introduction 

Studies on the norm of inner derivations lead [1] to introduce the idea of S-universal operators and criteria for the universality 

for subnormal operators i.e. an operator  such that , for each norm ideal  in  and 

 In [2] it was established the relationship between  and  on  where the operators  and P 

are -universal. To be precise; supposing that  are -universal, then and 

the norm of a generalized derivation implemented by two -universal operators is less than or equal to half the sum of the 

norms of inner derivations implemented by each operator [3]. The norm of a derivation  as a mapping of  onto itself is 

given by   [4]. Kadison, Lance and Ringrose [60] showed that if  is self-adjoint and  maps a subalgebra of  

into , then  where  is the commutant of the subalgebra . In [5] the author used 

an example of a self-adjoint operator to show that the hypothesis that  is inessential, taking  to be the subalgebra of 

diagonal matrices with . Later on, Bonyo [6] investigated the relationship between diameter of the numerical range of an 

operator  and norms on inner derivations implemented by  on the norm ideal, and further considered the application 

of -universality to the relationship. The relationship in [7] determined using the fact that a generalized or inner derivation is an 

operator and as such, one can calculate its numerical range as well as the norm whenever applicable. Indeed, it was noted in [8] 

that for any operator  and norm ideal  in ,  where  is the diameter. Furthermore, it 

was shown that if  is -universal, and  a norm ideal in , then In [8], Rosenblum 

determined the spectrum of an inner derivation, . Kadison, Lance and in [9] the author investigated derivations  

acting on a general -algebra and which are induced by Hermitian operators. But [10] studied a derivation  acting on an 

irreducible -algebra B(H) for all bounded linear operators on a Hilbert space . The geometry of the spectrum of a normal 

operator  was used in [11] to show that the norm of a derivation is given by  using the geometry 

of the spectrum of normal operator . However, [12] raised the question on the ability to compute the norm of a derivation on an 

arbitrary -algebra. Research of [13] later used the density theorem to prove that the extension of derivations of a - algebra to 

its weak-closure in  [14] is achieved without increasing norm. In [15] the study computed the norm of a derivation on a von 

Neumann algebra. Specifically, it was shown that if  is a von Neumann algebra of operators acting on a separable Hilbert 

space  and  and  is the derivation induced by , then  where  is the center of  [16]. 

Given an algebra of bounded linear endomorphisms  for a real or complex vector space , it was shown that for each 

element , an operator  is defined on  and  Furthermore if is a 

complex Hilbert space then the norm equality holds [17]. Also [18] used a method which applies to a large class of uniformly 
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convex spaces to show that this norm formula does not apply for  and  For  spaces, the formula 

was proved to be true in the real case but not in the complex case when the space has three or more dimensions. 

The derivation constant  has been studied for unital non-commutative -algebra  [19]. In [20] the author studied  

for the multiplier  for a non-unital -algebra and obtained two results; that if  for a number 

of locally compact group  and  if  is (non-abelian) amenable group. However, [21] showed that in both finite and 

infinite dimensional vector spaces, the norm of a generalized derivation is given by  for a pair 

. In [21] and [22], the authors showed the necessary and sufficient conditions for a derivation  to be norm-

attainable. Several other results exists on the inequalities of derivations and commutators on -algebras. For instance [1] used a 

polar decomposition  of a complex matrix  and unitarily invariant norm  to prove the inequality 

Williams [79] proved that if a commutator  

is such that  is normal, then the norm relation  holds. Anderson [2], generalized Williams inequality 

and proved that  Later, [7] proved that if  and  are normal operators, then  The 

norms of derivations implemented by -universal operators have been shown to be less than or equal to half the sum of inner 

derivations implemented by each operator in [7] and in particular was proved that,  and 

. Using unitaries and non-orthogonal projections, Bhatiah and Kittaneh [5] determined 

max-norms and numerical radii inequalities for commutators. Some authors have used the concept of classical numerical range 

to study different classes of matrices of operators. For instance, many alternative formulations of -numerical range 

 for a unitary  where  for an  complex matrix , with  leading principle 

submatrix  and the  elementary symmetric functions of the eigen values of  [8]. In [7] the author extended the results 

of these formulations to the generalized cases, gave alternative proofs for some of them like convexity and even derived a 

formula for - numerical radius of a derivation as  In [14] applied positive operators in the 

proof of a similar result. Orthogonal projections being bounded operators, have extensive uses on implementation of 

derivations and construction of underlying algebras of the derivations. Vasilevski [76] studied the applications of -algebras 

constructed by orthogonal projections to Naimark’s dilation theorem. In [22] the author used orthogonal projections to induce a 

derivation on von Neumann algebras. In [9] the researcher used mutually orthogonal projections acting on a -algebra to prove 

that any local derivation is a derivation. 

 

2. Basic definitions 

Definition 2.2.0: An elementary operator  is said to be norm-attainable if there exists a unit vector , such that 

 
 

Definition 1.21: A Hilbert-Schmidt operator T with orthonormal basis  has a Hilbert-Schmidt norm  is defined by 

 
 

Definition 2.2.1: Let  denote the complex vector space of all  Hermitian matrices, endowed with the inner product 

, where Tr(.) is the trace on the positive matrices and  is the adjoint of , then: 

 

(i). the trace norm of , is defined by,  

 

(ii). the spectral norm of , also is defined by, , where  are the singular values of , i.e., the eigenvalues 

of . 

 

Definition 2.2.2: A tensor product of  with  is a Hilbert space , together with a bilinear mapping , such that 

(i). The set of all vectors  forms a total subset of , that is, its closed linear span is equal to ;  

 

(ii).  . 

 

We refer to the pair  as the tensor product. 

 

Remark 2.2.3: Let  and  be vector spaces over some fields and  and  be operators. Then there 

is a unique linear operator  defined by   

 

The function defined by  is bilinear and so by the universal property of tensor 

products, there exist a unique operator  for which the above equation holds. The map  is called the tensor product 

of  and . 

 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies                                                                                     www.multiresearchjournal.com 

163 

3. Main results 

Lemma 3.0.0: Given that  are matricial operator on a finite dimensional separable Hilbert space  then 

 is also matricial. 

 

Proof: Let  and  denote the matrices of the operators  and  respectively. Suppose that  forms a 

basis of  over a field 𝕂, then a simple computation shows that for      

                    

 
                  

                                                                                                                                                                                                                                             
 

which can also be written more compactly as where  is the finite difference for every  and . For a given 

 then it is also clear that  We adopt the order  (instead of ) for the image of an arbitrary operator  

which acts on  for . Thus, . But  and so by substituting 

in the equation above yields  so that  where for each  and , 

. Thus, we can also find  so that .  

 

Theorem 3.0.1: Let  be a generalized derivation defined  for orthogonal projections  

and  induced by , then  and   

 

Proof: Taking  for a fixed  then . Suppose that  and  which induce  and  

respectively are bounded, then  can take the form of a diagonal matrix and  is also bounded. 

Now 

 

  
        

  
                  

  
                  

 
 

so that on taking the supremum over both sides of the inequality gives  

 

  
                                                     

  .  

 

Conversely the following relation hold 

 

     
 

Which implies that the following also hold. 

 

  
                                          

                                                                                                                                
                             

 
 

So 

 and for an arbitrary  then for  

 

                                                        
  

 
The following is a discussion of the norms of derivations in the context of tensor product of operators. We show that indeed δ 

P, Q is linear and bounded in this context. 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies                                                                                     www.multiresearchjournal.com 

164 

Remark 3.0.2: Suppose that  is infinite dimensional complex Hilbert space, then  is unitarily invariant to the Hilbert 

space tensor product . Let  and an arbitrary  for 

 There is a unique linear operator , called the tensor product of  

and  satisfying  and similarly . Moreover, there is a unique 

injective linear operator  which satisfy 

.  

 

Theorem 3.0.3: Let  and an arbitrary  for  then  is linear 

and bounded. 

 

Proof: By the definition of derivations, the map is defined by 

 

 for all .  

 

Let  and . Then 

 

 (  

 

  

  
 

 
 

 
Now for the case of boundedness, 

 

   
                                                                   

  
                                                                     

 
                                                                     

 
                                                                    

 

                                                                       
                                                                    

 
 

Letting , thus  is the upper bound for  

 

Theorem 3.0.4: Let  and orthogonal projections  then  

 

Proof:  

                                  

 

≤ sup  ∥  (𝑥𝑖  ⊗𝑦𝑖  

𝑛

𝑖=1

) ∥= 1 ∥ 𝑃 ∥∥ 𝑋 ∥∥ ( 𝑥𝑖  ⊗𝑦𝑖  

𝑛

𝑖=1

) ∥ −∥ 𝑋 ∥∥ 𝑄 ∥                                                                    

∥ ( 𝑥𝑖  ⊗𝑦𝑖  

𝑛

𝑖=1

)) ∥ ∥  𝑥𝑖  ⊗𝑦𝑖  

𝑛

𝑖=1

∥   
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Conversely, 

 

and  

 

 
 

Then 

  
 

And  

 

Thus  .  

 

In the sequel, we will consider inequalities for the norms of derivation discussed. The inequalities considered will be on 

generalized derivations and the results generalize to the cases of inner derivations. 

 

Theorem 3.0.5: Suppose that  are matricial operators, then 

 

 on   

 

Proof: Suppose that  and  are positive diagonal  matrices with eigenbases  and qn respectively for , with 

and . Given arbitrary , then, 

  

 and an arbitrary , with  then 

 

                                           
             

 
 

So that for a commutative  then 

 

 . 

Now 

 

                       
                 

 
 

and 

 

          
               

    
 

Similarly for a commutative  then   .  
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Now 

            
                    

 
 

We obtain an operator 

 

     
              

 
 

Now on introducing the norm function to the equality results into the norm inequality; 

 

 
 

 
 

Application of Hilbert-Schmidt norm to this, gives us the following 

 

  
 

Lemma 3.0.6: Let  and  is compact, then  

 

Proof:  is immediate from the commutativity of the singular values and  follows from the 

correspondence , and the inequality, .                         

 

Theorem 3.0.7: Let  be a algebra,  a commutative subalgebra of  and a map , such that 

. Let  be a linear map between matricial operator spaces  and 

. For -tuples of , whereby , then  and 

Moreover,  holds. 

 

Proof: We apply diagonal matrices  and . For , then by definition of  and  are coincidental [20] hence, 

∥. We now proceed to give proofs when  and when . For , let  

then for , we now have, 

   
             

    
               

  and 

 

    
               

                                                                
               

                                                           (Hilbert-Schmidt norm) 
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                                                                        =     

                                                                      

    
                                                                         

      
                                                                         

 
 

Therefore, 

 

   
           

 
 

and hence   

 

When  

 

 
 

which implies that 

 

     
                                                                              

    
                                                                                   

 
                                                   

    
                                               

 
 

This implies that 

 

  
 

and therefore, .  

 

Lastly, consider  defined by for all .                                                       

We obtain,  

 

     
 

   
 

   
                                

 
 

Therefore, on taking supremum on both sides of the inequality above we get . Application of the property of 

complete boundedness of the norm of δ, we further get  which implies that 

. Therefore, , this completes the claim. 
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Example 3.0.8: Let  be a derivation defined by . Let an operator , be defined by 

 on a finite dimensional Hilbert space , for an orthonormal basis   

We can then set the matrix for an arbitrary operator  and that of  as, 

 

.  

 

It is clear by simple calculation that  

 

  
 

Now suppose that  has a unique direct decomposition given by  and  is an identity in the range of ,  

 

then  becomes . We can find a unitary such that 

 

   
                                 

           
 

By triangle inequality, 

 

 
 

Now considering another operator  similar to , we can get another orthonormal basis  such that  is defined by  

 

. 

 

Let also  and so  

 

 
 

Lemma 3.0.9: Suppose that for an arbitrary  and  then, 

 

for  and the reverse inequalities hold for . 

 

Proof: If  and , are nonnegative real eigenvalues for  and , then 

  

. The inequalities follow, respectively, from the concavity of the function   

 

 for  and the convexity of the function for  

 

Proposition 3.1.0: Let  and an arbitrary  for some . Then 

 

 
 

for . 

 

Proof: We define a constant  by  

 

Where,                                   
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and     

 

where     

                                                                                                                                                                        
 

We prove the case for 0 < p < 2 and infer the result onto the other cases. We have 

 

 
 

Proposition 3.1.1: Let  for some . Then 

 

for . 

 

Proof: We set  

 

Now

 
 

Since  is greater than or equal to , we deduce from lemma 4.20 that 

 

 

Similarly, we have . It therefore implies that 

 

 

 

4. Conclusion  

In this paper, we have shown that the norm of a derivation, induced by orthogonal projections via tensor product is linear, 

bounded and continuous. Furthermore, we have inequalities of such a derivation induced by n-tupled orthogonal projections.  
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