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Abstract 

A classical potential Burger’s equation is studied by Lie 

group analysis. The constructed Lie point symmetries are 

used to perform symmetry reductions of the potential 

burgers equation and the resulting reduced ordinary 

differential equation systems investigated for exact group-

invariant solutions. Solitons have also been constructed 

using symmetry span of space and time translations. Finally, 

two conserved quantities are derived by multiplier approach 

for the model. 
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1. Introduction 

The Burgers equation [3] is of great mathematical and physical attention. The equation is ubiquitous in hydrodynamics 

applications and other scientific realms since it is among the simplest partial differential equations that combine a description 

of interacting nonlinear and dissipative effects. Mathematically, it does serve as the prototype of an equation that can be 

linearized through a direct coordinate transformation. Essentially, from the classical Burgers equation [2]. 

  

  (1.1) 

 

we can let 

 

  (1.2) 

 

Substitute for q in (1.1) and integrate with respect to x to yield the potential Burgers equation 

 

  (1.3) 

 

where u = u(t, x). 

 

2. Preliminaries 

In this section, we outline preliminary concepts which are useful in the sequel. 

 

Local Lie groups 

In the Euclidean spaces Rn of independent variables x = xi and Rm of dependent variables u = uα, we consider the 

transformations [13]. 

  

  (2.1) 

 

involving the continuous parameter  which ranges from a neighbourhood N’ ⊂ N ⊂ R of  = 0 where the functions ϕ i and ψ α 

differentiable and analytic in the parameter . 
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Definition 2.1: The set G of transformations given by (2.1) is a local Lie group if it holds true that 

 

1. (Closure) Given T 1, T 2  G, for 1; 2  N ‘⊂ N, then  

T 1T 2=T 3  G; 3= ϕ ( 1; 2) N. 

2. (Identity) There exists a unique T0  G if and only if  = 0 such that  

T T0=T0T  =T . 

3. (Inverse) There exists a unique T -1  G for every transformation T   G, 

 Where   N ‘⊂ N and -1  N such that 

 T T -1=T -1T =T0. 

 

Remark 2.2: Associativity of the group G in (2.1) follows from (1). 

Prolongations 

In the system, 

 

  (2.2) 

 

the variables uα are dependent. The partial derivatives u(1) = {u i
α}, 

, are of the first, second, . . ., up to the πth-orders. 

 

Denoting 

 

  (2.3) 

 

the total differentiation operator with respect to the variables x i and δj 
i, the Kronecker delta,  

we have 

 

  (2.4) 

 

where u i α defined in (2.4) are differential variables Ibragimov [8]. 

 

(i.) Prolonged groups Consider the local Lie group G given by the transformations 

 

  (2.5) 

where the symbol  means evaluated on . 

 

Definition 2.3: The construction of the group G given by (2.5) is an equivalence of the computation of infinitesimal 

transformations 

 

  (2.6) 

 

obtained from (2.1) by a Taylor series expansion of ϕ i (x i, u α, ) and ψ i (x i, u α, ) in  about  = 0 and keeping only the 

terms linear in , where 

 

  (2.7) 

 

Remark 2.4: The symbol of infinitesimal transformations, X, is used to write (2.6) as 

 

  (2.8) 

 

where 

 

  (2.9) 

 

is the generator of the group G given by (2.5). 

 

 

http://www.multiresearchjournal.com/


International Journal of Advanced Multidisciplinary Research and Studies   www.multiresearchjournal.com 

193 

Remark 2.5: To obtain transformed derivatives from (2.1), we use a change of variable formulae 

 

  (2.10) 

where  is the total differentiation in the variables . This means that 

 

  (2.11) 

 

If we apply the change of variable formula given in (2.10) on G given by (2.5), we get 

 

  (2.12) 

 

Expansion of (2.12) yields 

 

  (2.13) 

 

The variables  can be written as functions of x i, uα, u(1), that is 

 

  (2.14) 

 

Definition 2.6: The transformations in the space of the variables x i, uα, u(1) given in (2.5) and (2.14) form the first prolongation 

group G [1]. 

 

Definition 2.7: Infinitesimal transformation of the first derivatives is 

 

  (2.15) 

 

Remark 2.8: In terms of infinitesimal transformations, the first prolongation group G [1] is given by (2.6) and (2.15). 

 

ii) Prolonged generators 

 

Definition 2.9: By using the relation given in (2.12) on the first prolongation group G [1] given by Definition 2.6, we obtain [5] 

 

  (2.16) 

 

  (2.17) 

 

and thus 

 

  (2.18) 

 

is the first prolongation formula. 

 

Remark 2.10: Similarly, we get higher order prolongations [8], 

 

  (2.19) 

 

Remark 2.11: The prolonged generators of the prolongations G [1], . . . , G [κ] of the group G are 

 

  (2.20) 

 

where X is the group generator given by (2.9). 

 

Group invariants 

Definition 2.12: A function Γ(x i, uα) is called an invariant of the group G of transformations given by (2.1) if 

 

  (2.21) 
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Theorem 2.13: A function Γ(x i, uα) is an invariant of the group G given by (2.1) if and only if it solves the following first-order 

linear PDE: [5] 

 

  (2.22) 

 

From Theorem (2.13), we have the following result. 

 

Theorem 2.14: The local Lie group G of transformations in R n given by (2.1) [8] has precisely n − 1 functionally independent 

invariants. One can take, as the basic invariants, the left-hand sides of the first integrals 

 

  (2.23) 

 

of the characteristic equations for (2.22): 

 

  (2.24) 

 

Symmetry groups 

Definition 2.15: The vector field X (2.9) is a Lie point symmetry of the PDE system (2.2) if the determining equations 

 

  (2.25) 

are satisfied, where  means evaluated on ∆α = 0 and X [π] is the π-th prolongation of X. 

 

Definition 2.16: The Lie group G is a symmetry group of the PDE system given in (2.2) if the PDE system (2.2) is form-

invariant, that is 

 

  (2.26) 

 

Theorem 2.17: Given the infinitesimal transformations in (2.5), the Lie group G in (2.1) is found by integrating the Lie 

equations 

 

  (2.27) 

 

Lie algebras 

Definition 2.18: A vector space Vr of operators [13] X (2.9) is a Lie algebra if for any two operators, Xi, Xj ∈ Vr , their 

commutator 

 

  (2.28) 

 

is in Vr for all i, j = 1, . . . , r. 

 

Remark 2.19: The commutator satisfies the properties of bilinearity, skew symmetry and the Jacobi identity [14].  

 

Theorem 2.20: The set of solutions of the determining equation given by (2.25) forms a Lie algebra [5]. 

 

Conservation Laws  

Let a system of πth-order PDEs be given by (2.2).  

Definition 2.21: The Euler-Lagrange operator δ/δuα is 

 

  (2.29) 

 

and the Lie- Backlund operator in abbreviated form [5] is 

 

  (2.30) 
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Remark 2.22: The Lie- Backlund operator (2.30) in its prolonged form is 

 

  (2.31) 

 

Where 

 

  (2.32) 

 

and the Lie characteristic function is 

 

  (2.33) 

 

Remark 2.23: The characteristic form of Lie- Backlund operator (2.31) is 

 

  (2.34) 

 

The method of multipliers 

Definition 2.24: A function  is a multiplier of the PDE system given by (2.2) if it satisfies the condition 

that [10] 

 

  (2.35) 

 

where DiT i is a divergence expression. 

 

Definition 2.25: To find the multipliers Λ α, one solves the determining equations (2.36) [1], 

 

  (2.36) 

 

Notation 2.26: We will use Ci, i ∈ N as constants of integration and Ci(x1, x2, . . .), i ∈ N as arbitrary function of x1, x2, . . . . 

 

3. Main results 

3.1 Lie point symmetries of (1.3) 

We start first by computing Lie point symmetries of the Burgers Equation (1.3)which admits the continuous Lie group of 

transformations infinitesimally generated by 

 

  (3.1) 

 

if and only if 

 

  (3.2) 

 

Using the definition of the second prolongation (2.20) 

 

  
 

where 

  
 

And 

 

  (3.3) 
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  (3.4) 

 

Now the determining Equation (3.2) yields 

 

  (3.5) 

 

or 

 

  (3.6) 

 

which on substitution for uxx by ut − u 2x becomes 

 

  (3.7) 

 

By definition, τ, ξ and η are functions of t, x and u only. For that reason, we can then split Equation (3.7) on the derivatives of u 

(without losing any information) and obtain 

 

  (3.8) 

 

  (3.9) 

 

  (3.10) 

 

  (3.11) 

 

  (3.12) 

 

By the Equations in (3.8), 

 

  (3.13) 

 

Equation (3.9) is second order ordinary linear differential equation and is solved by 

 

  (3.14) 

 

Substitute for ξ and η in (3.10) to obtain 

 

  (3.15) 

 

Furthermore, Equation (3.11) is necessary and sufficient for 

 

  (3.16) 

 

and when used in (3.15), one obtains 

 

  (3.17) 

 

from which 

 

  (3.18) 
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If we use the current values for η, τ and ξ in (3.12), we have that 

 

  (3.19) 

 

which splits on powers of x to yield 

 

  (3.20) 

  

  (3.21) 

 

  (3.22) 

 

Equations (3.20) and (3.21) respectively admit 

 

  (3.23) 

 

  (3.24) 

 

Splitting Equation (3.22) on coefficients of e −u, and using value of τ in the resulting equations, one finds that 

 

  (3.25) 

 

Hence we have 

 

  
 

where Γ(t, x) is any solution to the heat equation 

 

  (3.26) 

 

We have obtained an infinite dimensional Lie algebra spanned by 

 

  (3.27) 

 

  (3.28) 

 

  (3.29) 

 

  (3.30) 

 

  (3.31) 

 

  (3.32) 

 

  (3.33) 

 

Remark 3.1: The potential Burgers equation (1.3) has an infinite-dimensional Lie algebra of point symmetries and many 

higher symmetries [4]. This is evident from the presence of an arbitrary function of the independent variables in the last 

symmetry. 
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3.2 Commutator Table for Symmetries 

We evaluate the commutation relations for the symmetry generators. By definition of Lie bracket [14], for example, we have that 

 

  (3.34) 

 

Remark 3.2: The remaining commutation relations are obtained analogously. We present all commutation relations in table 

(1) below. 

 
Table 1: A commutator table for the Lie algebra spanned by the symmetries of pontential Burger’s equation 

 

[Xi; Xj] X1 X2 X3 X4 X5 X6 X 

X1 0 -8 X1 -X1 + 2X6 0 -2X4 0 1 

X2 8 X1 0 -8X3 4X4 -4X5 0 2 

X3 X2  2X6 8X3 0 2X5 0 0 t 

X4 0 -4X4 -2X5 0 X6 0 3 

X5 2X4 4X5 -X6 0 0 0 x 

X6 0 0 0 0 0 0 -X 

X - 1 - 2 - t - 3 - x X 0 

 

Where 

 

  
 

3.3 Group Transformations 

The corresponding one-parameter group of transformations can be determined by solving the Lie equations  [15]. Let T i be the 

group of transformations for each Xi, i = 1, 2, 3, 4. We display how to obtain T i from Xi by finding one-parameter group for 

the infinitesimal generator X5, namely, 

 

  (3.35) 

 

In particular, we have the Lie equations 

 

  (3.36) 

 

Solving the system (3.36) one obtains, 

 

  (3.37) 

 

and hence the one-parameter group T 4 corresponding to the operator X5 is 

 

  (3.38) 

 

All the five one-parameter groups are presented below: 

 

  (3.39) 

 

3.4 Symmetry transformations 

We now show how the symmetries we have obtained can be used to transform sepcial exact solutions of the potential burgers 
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equation into new solutions. The Lie group analysis vouches for fundamental ways of constructing exact solutions of PDEs, 

that is, group transformations of known solutions and construction of group-invariant solutions. We will illustrate these 

methods with examples. If  is a solution of equation (1.3) 

 

  (3.40) 

 

is also a solution. The one parameter groups dictate to the following generated solutions: 

 

  (3.41) 

 

3.5 Construction of Group-Invariant Solutions 

Now we compute the group invariant solutions of Burger’s equation. 

 

1)  

 

The associated Lagrangian equations 

 

  (3.42) 

 

yield two invariants, J1 = x/t and J2 = u + 1/2 ln x + x 2/4t . Thus using J2 = Φ(J1), we have 

 

  (3.43) 

 

The derivatives are given by: 

 

  
 

If we substitute these derivatives into Equation (1.3), we obtain the second order ordinary differential equation 

 

  
 

By the transformation 

 

  (3.44) 

 

we have the Riccati equation 

 

  (3.45) 

 

for which one particular solution is 

 

  
 

Suppose we let 
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and obtain 

 

  
 

Substitutions for y and dy/dz into Equation (3.45), gives us 

 

  (3.46) 

 

that simplifies to 

 

  (3.47) 

 

Integration yields 

 

  (3.48) 

 

Finally 

 

  
 

and 

 

  
 

whose integration yields 

 

  (3.49) 

 

Thus, the group-invariant solution associated to the X1 is 

 

  
 

ii)  

 

  (3.50) 

 

This gives the constants J1 = u and , giving the solution 

 

  (3.51) 

 

We obtain the derivatives as follows: 

 

  (3.52) 

 

  (3.53) 

 

  (3.54) 

 

If we substitute the above derivatives in Equation (1.3), we obtain the second order ordinary differential equation 
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  (3.56) 

 

The transformations  and , yields the Bernoulli equation (with n = 2), 

 

  (3.57) 

 

Equation (3.57) admits 

 

  (3.58) 

 

This means that 

 

  (3.59) 

 

and by integration with respect to y, we have 

 

  (3.60) 

 

Finally, by the change of variables to the initial ones, we have 

 

  (3.61) 

 

(iii) X3 = ∂/∂t (Stationary solutions) 

 

The Lagrangian system associated with the operator X3 is 

 

  (3.62) 

 

whose invariants are J1 = x and J2 = u. So, u = ψ(x) is the group-invariant solution. Substituting of u = ψ(x) into (1.3) yields 

 

  (3.63) 

 

Equation (3.63) is a second order nonlinear ODE which is satisfied by the function 

 

  (3.64) 

 

Thus the stationary solution for (1.3) is given by  

 

  (3.65) 

 

iv  

Characteristic equations associated to the operator X4 are 

 

  (3.66) 

 

yields J1 = t and J2 = x 2/2 + 2tu. As a result, the group-invariant solution of (1.3) for this case is J2 = φ(J1), for φ an arbitrary 

function. That is, 

 

  (3.67) 

 

Substitution of the value of u from equation (3.67) into equation (1.3) yields a first order ordinary differential equation 

, whose general solution is . Hence, the group-invariant solution under X4 is 
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  (3.68) 

 

v) Space translation -invariant solutions 

We consider the space translation operator 

 

  (3.69) 

 

Characteristic equations associated with the operator (3.69) are 

 

  (3.70) 

 

which give two invariants J1 = t and J2 = u. Therefore, u = ψ(t) is the group-invariant solution for some arbitrary function ψ. 

Substitution of u = ψ(t) into (1.3) yields 

 

  (3.71) 

 

whose solution is 

 

  (3.72) 

 

for C1 an arbitrary constant. Hence the group-invariant solution of (1.3) under the space translation operator (3.69) is 

 

  (3.73) 

 

(vi)  

This Lie point symmetry does not have any invariant solution. 

 

vii)  

This Lie point symmetry does not have any invariant solution. 

 

3.6 Soliton 

We obtain a traveling wave solution of the potential Burgers Equation (1.3) by considering a linear combination of the 

symmetries X5 and X3, namely, [13] 

 

  (3.74) 

 

The characteristic equations are 

 

  (3.75) 

 

We get two invariants, J1 = x − ct and J2 = u. So the group-invariant solution is 

 

  (3.76) 

 

for some arbitrary function Φ and c the velocity of the wave. 

Substitution of u into (1.3) yields a second order ordinary differential equation 

 

  (3.77) 

 

with constant coefficients. If z = x − ct and Φ‘ (z) = y, then we have a simplified ordinary differential equation of the form 

 

  (3.78) 

 

whose solution is 

 

  (3.79) 
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This means that 

 

  (3.80) 

 

and is solved by 

 

  (3.81) 

 

Clearly, 

 

  (3.82) 

 

4 Conservation laws of equation (1.3) 

We will employ multipliers in the construction of conservation laws. 

 

4.1 The multipliers 

We make use of the Euler-Lagrange operator defined as defined in [15] to look for a zeroth order multiplier Λ = Λ(t, x, u). The 

resulting determining equation for computing Λ is 

 

  (4.1) 

 

where 

 

  (4.2) 

 

Expansion of Equation (4.1) yields 

 

  (4.3) 

 

Invoking the total derivatives 

 

  (4.4) 

 

  (4.5) 

 

on Equation (4.3) produces 

 

  (4.6) 

 

Splitting Equation (4.6) on derivatives of u produces an overdetermined system of four partial differential equations, namely 

 

  (4.7) 

 

  (4.8) 

 

  (4.9) 

 

  (4.10) 

 

Note that Equation (4.8) is sufficient for Equations (4.9) and (4.7) . We can write Equation (4.8) as 

 

  (4.11) 

 

if and only if 
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  (4.12) 

 

giving a solution of the form 

 

  (4.13) 

 

Substitute this value into Equation (4.10) to obtain 

 

  (4.14) 

 

which is the same as 

 

  (4.15) 

 

This is a linear heat equation and can be solved by separation of variables. If we assume a solution of the form 

 

  (4.16) 

 

then Equation (4.15) gives 

 

  (4.17) 

 

Dividing by  and introducing the separation constant −λ2, we have 

 

  (4.18) 

 

  (4.19) 

 

The solutions to Equations (4.18) and (4.19) are respectively given by 

 

  (4.20) 

  

  (4.21) 

 

which implies that 

 

  (4.22) 

 

We finally have Equation (4.13) becomes 

 

  (4.23) 

 

Essentially, we extract the two multiplies 

 

  (4.24) 

 

  (4.25) 

 

Remark 4.1: Recall that a multiplier Λ for Equation(1.3) has the property that for the density T t = T t (t, x, u) and flux T x = T x 

(t, x, u, ux) 

 

  (4.26) 

 

We derive a conservation law corresponding to each of the multipliers.  

 

(i). Conservation law for the multiplier  

Expansion of equation (4.26) gives 

 

  (4.27) 
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Splitting Equation (4.27) on the second derivative of u yields 

 

  (4.28) 

 

  (4.29) 

 

The integration of Equation (4.28) with respect to ux gives 

 

  (4.30) 

 

Substituting the expression of T x from (4.30) into Equation (4.29) we get 

 

  (4.31) 

 

which splits on first derivatives of u, to give 

 

  (4.33) 

 

  (4.34) 

 

  (4.35) 

 

Integrating equations (4.33) and (4.34) with respect to u manifests that 

 

  (4.36) 

 

  (4.37) 

 

By substituting the obtained functions into Equation (4.35), we have 

 

  (4.38) 

 

Since C(t, x) and B(t, x) contribute to the trivial part of the conservation law, we take C(t, x) = B(t, x) = 0 and obtain the 

conserved quantities 

 

  (4.39) 

 

  (4.40) 

 

from which the conservation law corresponding to the multiplier  is given by 

 

  (4.41) 

 

(ii). Conservation law for the multiplier  

Expansion of equation (4.26) gives 

 

   (4.42) 

 

Splitting Equation (4.42) on the second derivative of u yields 

 

  (4.43) 

 

  (4.44) 

 

The integration of Equation (4.43) with respect to ux gives 

 

  (4.45) 

 

Substituting the expression of T x from (4.45) into Equation (4.44) we get 
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  (4.46) 

 

which splits on first derivatives of u, to give 

 

  (4.48) 

 

  (4.49) 

 

  (4.50) 

 

Integrating equations (4.48) and (4.49) with respect to u manifests that 

 

  (4.51) 

 

  (4.52) 

 

By substituting the obtained functions into Equation (4.50), we have 

 

  (4.53) 

 

We may take c(t, x) and c(t, x) as contributing to the trivial part of the conservation law and set them to c(t, x) = b(t, x) = 0 and 

obtain the conserved quantities 

 

  (4.54) 

 

   (4.55) 

 

from which the conservation law corresponding to the multiplier  is given by 

 

  (4.56) 

 

Remark 4.2: It can be shown that the two sets of conserved quantities are conservation laws. Given that and 

, the verification reaffirms that the potential burger’s equation is itself a conversation law. 

 

5. Conclusion 

In this manuscript, an infinite dimensional Lie algebra of Lie point symmetries has been applied to study a potential Burger’s 

equation. A commutator table has been constructed for the obtained Lie algebra. We have also used symmetry reductions to 

compute exact group-invariant solutions, including a soliton. Conservation laws have also been derived for the model with the 

use of zeroth order multipliers. 
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